The Kernel Trick,

Gram Matrices, and
Feature Extraction

CS6787 Lecture 4 — Spring 2026



Today: A “Classic” Example of a Tradeoft

* A pre-deep-learning-revolution concept

* Q: How do to kernel learning?

« Many ways to set up the computation
* are mathematically equivalent,
* but not computationally equivalent
« or numerically equivalent



Basic Linear Models

* For two-class classification using model vector w
output = sign(w" x)

* What is the compute cost of making a prediction
IN a d-dimensional l[inear model, given an
example x7?

« Answer: d multiplies and d adds
* To do the dot product.



Optimizing Basic Linear Models

» For classification using model vector w

1

output = sign(w" x)

 Optimization methods for this task vary; here's logistic
regression

1 T
inimj w—E log (1 —w’ z;y;
minimize 02 Og( + exp(—w :By))
(yze{_lal})



SGD on Logistic Regression

» Gradient of a training example Is

V fi(w) = —

1 4+ exp(w! z;y;)

SO SGD update step is

f@i

‘T 77



What is the compute cost of an SGD update?

» For logistic regression on a d-dimensional model
LiYq
1+ exp(w; @:y;)
« Answer: 2d multiples and 2d adds + O(1) extra
o-pdsmultiplies and d adds to do the dot product

 d multiplies and d adds to do the AXPY operation
* O(1) additional ops for computing the exp, divide, etc.

Wiyl = W + Oy



Benefits of Linear Models

 Fast classification: just one dot product

- Fast training/learning: just a few basic linear algebra
operations

 Drawback: limited expressivity

« Can only capture linear classification boundaries - bad for many
problems

« How do we let linear models represent a broader class of
geC|sf|.c;n7boundarles, while retaining the systems
enefits”



Review: The Kernel Method

« |dea: in a linear model we can think about the similarity
between two training examples x and y as being

T
LY
« This is related to the rate at which a random classifier will

separate Xxand y

» Kernel methods replace this dot-product similarity with
an arbitrary Kernel function that computes the
similarity between X and y

K(x,y): X xX =R



Kernel Properties

* What properties do kernels need to have to be useful
for learning?

« Key property: kernel must be symmetric K(z,y) = K(y, )

« Key property: kernel must be positive semi-definite

Ve, e R x; € X, S:S:CiCjK(ZEi,ZCj) >0
i=1 j=1

« Can check that the dot product has this property



Facts about Positive Semidefinite Kernels

e Sum of two PSD kernels is a PSD kernel

K(x,y) = Ki(x,y) + Ka(x,y) is a PSD kernel
 Product of two PSD kernels is a PSD kernel
K(x,y) = Ki(x,y)Kao(x,y) is a PSD kernel

» Scaling by any function on both sides is a kernel

K(z,y) = f(x)K1(x,y)f(y) is a PSD kernel



Other Kernel Properties

« Useful property: kernels are often non-negative
K(z,y) >0

« Useful property: kernels are often scaled such that

K(e.y) <1, and K(z,y) =1 &2 =y

* These properties capture the idea that the kernel is expressing
the similarity between xandy



Common Kernels

» Gaussian kernel/RBF kernel: de-facto kernel in
machine learning

K(z,y) = exp (—|z — y/|?)

 We can validate that this is a kernel
 Symmetric?
« Positive semi-definite?
 Non-negative?
* Scaled so that K(x,x) =17



Common Kernels (continued)

- Linear kernel: just the inner product K(z,y) = x'y
- Polynomial kernel: K(z,y) = (1+z"y)?

- Laplacian kernel: K(z,y) = exp (—8|z — y|/1)



Kernels as a feature mapping

 More generally, any function that can be written in

the form
K(z,y) = ¢(x)" o(y)
(Where ¢ : R %s called a feature map) is a

kernel.

* Even works for maps onto infinite dimensional
Hilbert space

 ANd In this case the converse is also true: any kernel has
an associated (possibly |nf|n|te—d|men5|onanyeature map.




Classitying with Kernels

* Recall the SGD update is
LiYi
1 + exp(wy z;y;)

« Resulting weight vectors will always be in the span of the
examples.

Wiyl = Wt + O

* SO, our prediction will be:

w = Z wiz; = hy(x) = sign (w' z) = sign (Z uzaj;rm)
i=1

1=1




Classitying with Kernels

* AN equivalent way of writing a linear model on 3
training set Is

hy(x) = sign (Z Ui T x)

 We can kernel-ize this by replacing the dot
products with kernel evaluations

h,(x) = sign (Zuz (4, )



Learning with Kernels

* An equivalent way of writing linear-model
logistic regression Is

T
1 n n
Inimi Cu — 10 1 e — o i Yi
minimaiz - ;:1 g ( + exp ( (;1 uj.ch) Ty ))

 We can kernel-ize this by replacing the dot
products with kernel evaluations

.1
mlnlmlzeuﬁzglog 1+ exp Zujyz :Cj,xz
1=



The Computational Cost of Kernels

* Recall: benefit of learning with kernels is that we can
express a wider class of classification functions

» Recall: another benefit is linear classifier learning problems
are “easy” to solve because they are convex, and gradients
easy to compute

« Major cost of learning naively with Kernels: have to
evaluate K(x, y)
« For SGD, need to do this effectively n times per update
« Computationally intractable unless K is very simple



The Gram Matrix

« Address this computational problem by pre-computing the
kernel function for all pairs of training examples in the

dataset.

» Transforms the logistic regression learning problem into

1 n
Inimize,, — ] 1+ —Z-ZG)
minimize nz og( exp( Y € ; ’”IL\L)

1=1
* This is much easier than re-computing the kernel at each iteration



Problems with the Gram Matrix
* SUpPpPOSe we have n examples in our training set.

* How much memory is required to store the Gram
matrix G?

- What is the cost of taking the product G; w to compute
a gradient?

 What happens if we have one hundred million training
examples?



Feature Extraction

* Simple case: let's imagine that X is a finite set {1, 2, ..., k}

. . kxk
- We can define our kernel as a matrix M € R¥”

Mi,j — K(Z7])

* Since M is positive semidefinite, it has a square root
k U'U =M
Z Ur,iUk,; = M; ; = K(3,7)

1=1



Feature Extraction (continued)

« So if we define a feature mapping ¢(i) = Ue; then

k
o(i) ¢(4) = Y UrilUrj = Mi; = K(i, j)

. ___-_--_-_-_'_‘—-——.-
1=1

* The kernel is equivalent to a dot product in some space

* As we noted above, this is true for all kernels, not just
finite ones

« Just with a possibly infinite-dimensional feature map



Classitying with feature maps

* Suppose that we can find a finite-dimensional feature
mMap that satisfies NT Lo
o(1)” o(J) = K(4,7)

* Then we can simplify our classifier to

hy () = sign (Z u; K (x;, x )
= sign (Z uiqb(xq;)Tqb(w)) = sign (w' ¢(z))



Learning with feature maps

« Similarly we can simplify our learning objective to

1 mn
minimize,, — Z log|1+exp | — chb(wi)y@
n

1=1

« Take-away: this is just transforming the input data, then
running a linear classifier in the transformed space!

« Computationally: super efficient

* As long as we can transform and store the input data in an efficient
way



Problems with feature maps

* The dimension of the transformed data may be much larger
than the dimension of the original data.

« Suppose that the feature map is ¢ : RY — R” and there are n
examples

« How much memory is needed to store the transformed
features?

- What is the cost of taking the product u' ¢(x;)to compute a
gradient?



Feature maps vs. Gram matrices

 Interesting systems trade-offs exist here.

« When number of examples gets very large, feature
maps are better.

« When transformed feature vectors have high
dimensionality, Gram matrices are better.



Another Problem with Feature Maps

« Recall: | said there was always a feature map for any kernel
such that N . o
o(1)" o(J) = K(4,7)

« But this feature map is not always finite-dimensional

« For example, the Gaussian/RBF kernel has an infinite-dimensional
feature map

 Many kernels we care about in ML have this property

 What do we do if ¢ has infinite dimensions?
 We can't just compute with it normally!



Solution: Approximate feature maps

* Find a finite-dimensional feature map so that
- T
» Typically, we want to find a family of feature maps ¢.

such that
op : R — RP

lim ¢p(z)” ¢ply) = K(z,y)

D — o0



Types of approximate feature maps

« Deterministic feature maps
* Choose a fixed-a-priori method of approximating the kernel

« Generally not very popular because of the way they scale with
dimensions

- Random feature maps

 Choose a feature map at random (typically each feature is
Independent) such that

E [¢(z)" ¢(y)] = K(z,y)

 Then prove with high probability that over some region of

iNnterest ‘¢($)T¢(y) — K(£C7 y)‘ S €



Types of Approximate Features (continued)

« Orthogonal randomized feature maps
* |Intuition behind this: if we have a feature map where for some i and |

el o(z) ~ el ()

then we can't actually learn much from including both features in
the map.

» Strategy: choose the feature map at random, but subject to the
constraint that the features be statistically “orthogonal” in some way.

- Quasi-random feature maps

« Generate features using a low-discrepancy sequence rather than
true randomness



Adaptive Feature Maps

« Everything before this didn’t take the data into account

- Adaptive feature maps look at the actual training set and
try to minimize the kernel approximation error using the
training set as a guide

« For example: we can do a random feature map, and then fine-tune

the randomness to minimize the empirical error over the training
set

« Gaining in popularity

* Also, neural networks can be thought of as adaptive feature
mMaps.



Summary: Many Ways to Learn Linear Models

« Options for representing features:
* Learn with an exact feature map
* Learn with a kernel
e Learn with an approximate feature map

« Other choices:
e Pre-compute feature map/Gram matrix and store in memory
« Re-compute feature map/kernel value at each iteration



Systems Tradeoffs
e Lots of tradeoffs here

» Do we spend more work up-front constructing a more
sophisticated approximation, to save work on learning
algorithms?

- Would we rather scale with the data, or scale to more
complicated problems?

« Another task for hyperparameter optimization



Demo



Is this still used today?

e Yes!

» People still use this trick In low-dimensional applications
such as 3D modeling/graphics

e The basis for efficient “linear attention” mechanisms



Dimensionality reduction



Linear models are linear in the dimension

 But what if the dimension d is very large?
« Example: if we have a high-dimensional kernel map

* |t can be difficult to run SGD when the
dimension is very high even if the cost is linear
* This happens for other learning algorithms too



Idea: reduce the dimension

. 5 high dimension is the problem, can we just reduce
?

* This is the problem of dimensionality reduction.

* Dimensionality reduction benefits both statistics
and systems

- Statistical side: can help with generalization by
identifying important subset of features

« Systems side: lowers compute cost



Techniques for dimensionality reduction

« Feature selection by hand
 Simple method
« But costly in terms of human effort

* Principal component analysis (PCA)

 |dentify the directions of highest variance in the
dataset

* Then project onto those directions
 Many variants: e.g. kernel PCA



More techniques for dimensionality reduction

 Locality-sensitive hashing (LSH)

 Hash input items into buckets so close-by elements map
INto the same buckets with high probability

« Many methods of doing this too

- Johnson-Lindenstrauss transform (random
projection)
 General method for reducing dimensionality of any
dataset

« Just choose a random subspace and project onto that
subspace



Johnson-Lindenstrauss lemma

Given a desired error € € (0,1), a set of m points in R,
and a reduced dimension D that satisfies D > 81052(7”)
there exists a linear map 7' such that

)

(=) llz—yl* < IT(@) -THI" < (1+e) - [lz -yl

for all points x and vy in the set.

In fact, a randomly chosen linear map T

works with high probability!



Consequences of J-L transform

* We only need O(log(m) / £2) dimensions to map a
dataset of size m with relative distance accuracy.

 No matter what the size of the input dataset was!

* This Is a very useful result for many applications

* Provides a generic way of reducing the dimension with
guarantees

» But there are more specialized data-dependent
ways of doing dimensionality reduction that can
work better.



Autoencoders

« Use deep learning to learn two models

 The encoder, which maps an example to a dimension-reduced
representation

 The decoder, which maps it back

e Train to minimMize the distance between encoded-and-
decoded examples and the original example.

original —— —— encoded —— — decoded
example —— encoder — example —— decoder —— example

r;inRY — ——— inRP —— — % z;inRY

_— _—
_— _—
_ _
_— _—




Questions

« Upcoming things:
« Paper 1a or 1b review due on Monday
« Papers 2a/2b in class on Monday

« Start thinking about the class project
[t will come faster than you think!



	Slide 1: The Kernel Trick,  Gram Matrices, and  Feature Extraction
	Slide 2: Today: A “Classic” Example of a Tradeoff
	Slide 3: Basic Linear Models
	Slide 4: Optimizing Basic Linear Models
	Slide 5: SGD on Logistic Regression
	Slide 6: What is the compute cost of an SGD update?
	Slide 7: Benefits of Linear Models
	Slide 8: Review: The Kernel Method
	Slide 9: Kernel Properties
	Slide 10: Facts about Positive Semidefinite Kernels
	Slide 11: Other Kernel Properties
	Slide 12: Common Kernels
	Slide 13: Common Kernels (continued)
	Slide 14: Kernels as a feature mapping
	Slide 15: Classifying with Kernels
	Slide 16: Classifying with Kernels
	Slide 17: Learning with Kernels
	Slide 18: The Computational Cost of Kernels
	Slide 19: The Gram Matrix
	Slide 20: Problems with the Gram Matrix
	Slide 21: Feature Extraction
	Slide 22: Feature Extraction (continued)
	Slide 23: Classifying with feature maps
	Slide 24: Learning with feature maps
	Slide 25: Problems with feature maps
	Slide 26: Feature maps vs. Gram matrices
	Slide 27: Another Problem with Feature Maps
	Slide 28: Solution: Approximate feature maps
	Slide 29: Types of approximate feature maps
	Slide 30: Types of Approximate Features (continued)
	Slide 31: Adaptive Feature Maps
	Slide 32: Summary: Many Ways to Learn Linear Models
	Slide 33: Systems Tradeoffs
	Slide 34: Demo
	Slide 35: Is this still used today?
	Slide 36: Dimensionality reduction
	Slide 37: Linear models are linear in the dimension
	Slide 38: Idea: reduce the dimension
	Slide 39: Techniques for dimensionality reduction
	Slide 40: More techniques for dimensionality reduction
	Slide 41: Johnson-Lindenstrauss lemma
	Slide 42: Consequences of J-L transform
	Slide 43: Autoencoders
	Slide 44: Questions

