
The Kernel Trick,
Gram Matrices, and
Feature Extraction
CS6787 Lecture 4 — Spring 2026

Today: A “Classic” Example of a Tradeoff

• A pre-deep-learning-revolution concept

• Q: How do to kernel learning?

• Many ways to set up the computation
• are mathematically equivalent,
• but not computationally equivalent
• or numerically equivalent

Basic Linear Models

• For two-class classification using model vector w

• What is the compute cost of making a prediction
in a d-dimensional linear model, given an
example x?

• Answer: d multiplies and d adds
• To do the dot product.

Optimizing Basic Linear Models

• For classification using model vector w

• Optimization methods for this task vary; here’s logistic
regression

SGD on Logistic Regression

• Gradient of a training example is

• So SGD update step is

What is the compute cost of an SGD update?

• For logistic regression on a d-dimensional model

• Answer: 2d multiples and 2d adds + O(1) extra
ops
• d multiplies and d adds to do the dot product
• d multiplies and d adds to do the AXPY operation
• O(1) additional ops for computing the exp, divide, etc.

Benefits of Linear Models
• Fast classification: just one dot product

• Fast training/learning: just a few basic linear algebra
operations

• Drawback: limited expressivity
• Can only capture linear classification boundaries → bad for many

problems

• How do we let linear models represent a broader class of
decision boundaries, while retaining the systems
benefits?

Review: The Kernel Method

• Idea: in a linear model we can think about the similarity
between two training examples x and y as being

• This is related to the rate at which a random classifier will
separate x and y

• Kernel methods replace this dot-product similarity with
an arbitrary Kernel function that computes the
similarity between x and y

Kernel Properties

• What properties do kernels need to have to be useful
for learning?

• Key property: kernel must be symmetric

• Key property: kernel must be positive semi-definite

• Can check that the dot product has this property

Facts about Positive Semidefinite Kernels

• Sum of two PSD kernels is a PSD kernel

• Product of two PSD kernels is a PSD kernel

• Scaling by any function on both sides is a kernel

Other Kernel Properties

• Useful property: kernels are often non-negative

• Useful property: kernels are often scaled such that

• These properties capture the idea that the kernel is expressing
the similarity between x and y

Common Kernels

• Gaussian kernel/RBF kernel: de-facto kernel in
machine learning

• We can validate that this is a kernel
• Symmetric?
• Positive semi-definite?
• Non-negative?
• Scaled so that K(x,x) = 1?

Common Kernels (continued)

• Linear kernel: just the inner product

• Polynomial kernel:

• Laplacian kernel:

Kernels as a feature mapping

• More generally, any function that can be written in
the form

 (where is called a feature map) is a
kernel.

• Even works for maps onto infinite dimensional
Hilbert space
• And in this case the converse is also true: any kernel has

an associated (possibly infinite-dimensional) feature map.

Classifying with Kernels

• Recall the SGD update is

• Resulting weight vectors will always be in the span of the
examples.

• So, our prediction will be:

Classifying with Kernels

• An equivalent way of writing a linear model on a
training set is

• We can kernel-ize this by replacing the dot
products with kernel evaluations

Learning with Kernels

• An equivalent way of writing linear-model
logistic regression is

• We can kernel-ize this by replacing the dot
products with kernel evaluations

The Computational Cost of Kernels

• Recall: benefit of learning with kernels is that we can
express a wider class of classification functions

• Recall: another benefit is linear classifier learning problems
are “easy” to solve because they are convex, and gradients
easy to compute

• Major cost of learning naively with Kernels: have to
evaluate K(x, y)
• For SGD, need to do this effectively n times per update
• Computationally intractable unless K is very simple

The Gram Matrix

• Address this computational problem by pre-computing the
kernel function for all pairs of training examples in the
dataset.

• Transforms the logistic regression learning problem into

• This is much easier than re-computing the kernel at each iteration

Problems with the Gram Matrix

• Suppose we have n examples in our training set.

• How much memory is required to store the Gram
matrix G?

• What is the cost of taking the product Gi w to compute
a gradient?

• What happens if we have one hundred million training
examples?

Feature Extraction

• Simple case: let’s imagine that X is a finite set {1, 2, …, k}

• We can define our kernel as a matrix

• Since M is positive semidefinite, it has a square root

Feature Extraction (continued)

• So if we define a feature mapping then

• The kernel is equivalent to a dot product in some space

• As we noted above, this is true for all kernels, not just
finite ones
• Just with a possibly infinite-dimensional feature map

Classifying with feature maps

• Suppose that we can find a finite-dimensional feature
map that satisfies

• Then we can simplify our classifier to

Learning with feature maps
• Similarly we can simplify our learning objective to

• Take-away: this is just transforming the input data, then
running a linear classifier in the transformed space!

• Computationally: super efficient
• As long as we can transform and store the input data in an efficient

way

Problems with feature maps

• The dimension of the transformed data may be much larger
than the dimension of the original data.

• Suppose that the feature map is and there are n
examples

• How much memory is needed to store the transformed
features?

• What is the cost of taking the product to compute a
gradient?

Feature maps vs. Gram matrices

• Interesting systems trade-offs exist here.

• When number of examples gets very large, feature
maps are better.

• When transformed feature vectors have high
dimensionality, Gram matrices are better.

Another Problem with Feature Maps

• Recall: I said there was always a feature map for any kernel
such that

• But this feature map is not always finite-dimensional
• For example, the Gaussian/RBF kernel has an infinite-dimensional

feature map
• Many kernels we care about in ML have this property

• What do we do if ɸ has infinite dimensions?
• We can’t just compute with it normally!

Solution: Approximate feature maps

• Find a finite-dimensional feature map so that

• Typically, we want to find a family of feature maps ɸt
such that

Types of approximate feature maps

• Deterministic feature maps
• Choose a fixed-a-priori method of approximating the kernel
• Generally not very popular because of the way they scale with

dimensions

• Random feature maps
• Choose a feature map at random (typically each feature is

independent) such that

• Then prove with high probability that over some region of
interest

Types of Approximate Features (continued)

• Orthogonal randomized feature maps
• Intuition behind this: if we have a feature map where for some i and j

then we can’t actually learn much from including both features in
the map.

• Strategy: choose the feature map at random, but subject to the
constraint that the features be statistically “orthogonal” in some way.

• Quasi-random feature maps
• Generate features using a low-discrepancy sequence rather than

true randomness

Adaptive Feature Maps

• Everything before this didn’t take the data into account

• Adaptive feature maps look at the actual training set and
try to minimize the kernel approximation error using the
training set as a guide
• For example: we can do a random feature map, and then fine-tune

the randomness to minimize the empirical error over the training
set

• Gaining in popularity

• Also, neural networks can be thought of as adaptive feature
maps.

Summary: Many Ways to Learn Linear Models

• Options for representing features:
• Learn with an exact feature map
• Learn with a kernel
• Learn with an approximate feature map

• Other choices:
• Pre-compute feature map/Gram matrix and store in memory
• Re-compute feature map/kernel value at each iteration

Systems Tradeoffs

• Lots of tradeoffs here

• Do we spend more work up-front constructing a more
sophisticated approximation, to save work on learning
algorithms?

• Would we rather scale with the data, or scale to more
complicated problems?

• Another task for hyperparameter optimization

Demo

Is this still used today?

• Yes!

• People still use this trick in low-dimensional applications
such as 3D modeling/graphics

• The basis for efficient “linear attention” mechanisms

Dimensionality reduction

Linear models are linear in the dimension

• But what if the dimension d is very large?
• Example: if we have a high-dimensional kernel map

• It can be difficult to run SGD when the
dimension is very high even if the cost is linear
• This happens for other learning algorithms too

Idea: reduce the dimension

• If high dimension is the problem, can we just reduce
d?

• This is the problem of dimensionality reduction.

• Dimensionality reduction benefits both statistics
and systems
• Statistical side: can help with generalization by

identifying important subset of features
• Systems side: lowers compute cost

Techniques for dimensionality reduction

• Feature selection by hand
• Simple method
• But costly in terms of human effort

• Principal component analysis (PCA)
• Identify the directions of highest variance in the

dataset
• Then project onto those directions
• Many variants: e.g. kernel PCA

More techniques for dimensionality reduction

• Locality-sensitive hashing (LSH)
• Hash input items into buckets so close-by elements map

into the same buckets with high probability
• Many methods of doing this too

• Johnson-Lindenstrauss transform (random
projection)
• General method for reducing dimensionality of any

dataset
• Just choose a random subspace and project onto that

subspace

Johnson-Lindenstrauss lemma

In fact, a randomly chosen linear map T
works with high probability!

Consequences of J-L transform

• We only need O(log(m) / ε2) dimensions to map a
dataset of size m with relative distance accuracy.
• No matter what the size of the input dataset was!

• This is a very useful result for many applications
• Provides a generic way of reducing the dimension with

guarantees

• But there are more specialized data-dependent
ways of doing dimensionality reduction that can
work better.

Autoencoders

• Use deep learning to learn two models
• The encoder, which maps an example to a dimension-reduced

representation
• The decoder, which maps it back

• Train to minimize the distance between encoded-and-
decoded examples and the original example.

Questions

• Upcoming things:
• Paper 1a or 1b review due on Monday
• Papers 2a/2b in class on Monday
• Start thinking about the class project

• It will come faster than you think!

	Slide 1: The Kernel Trick, Gram Matrices, and Feature Extraction
	Slide 2: Today: A “Classic” Example of a Tradeoff
	Slide 3: Basic Linear Models
	Slide 4: Optimizing Basic Linear Models
	Slide 5: SGD on Logistic Regression
	Slide 6: What is the compute cost of an SGD update?
	Slide 7: Benefits of Linear Models
	Slide 8: Review: The Kernel Method
	Slide 9: Kernel Properties
	Slide 10: Facts about Positive Semidefinite Kernels
	Slide 11: Other Kernel Properties
	Slide 12: Common Kernels
	Slide 13: Common Kernels (continued)
	Slide 14: Kernels as a feature mapping
	Slide 15: Classifying with Kernels
	Slide 16: Classifying with Kernels
	Slide 17: Learning with Kernels
	Slide 18: The Computational Cost of Kernels
	Slide 19: The Gram Matrix
	Slide 20: Problems with the Gram Matrix
	Slide 21: Feature Extraction
	Slide 22: Feature Extraction (continued)
	Slide 23: Classifying with feature maps
	Slide 24: Learning with feature maps
	Slide 25: Problems with feature maps
	Slide 26: Feature maps vs. Gram matrices
	Slide 27: Another Problem with Feature Maps
	Slide 28: Solution: Approximate feature maps
	Slide 29: Types of approximate feature maps
	Slide 30: Types of Approximate Features (continued)
	Slide 31: Adaptive Feature Maps
	Slide 32: Summary: Many Ways to Learn Linear Models
	Slide 33: Systems Tradeoffs
	Slide 34: Demo
	Slide 35: Is this still used today?
	Slide 36: Dimensionality reduction
	Slide 37: Linear models are linear in the dimension
	Slide 38: Idea: reduce the dimension
	Slide 39: Techniques for dimensionality reduction
	Slide 40: More techniques for dimensionality reduction
	Slide 41: Johnson-Lindenstrauss lemma
	Slide 42: Consequences of J-L transform
	Slide 43: Autoencoders
	Slide 44: Questions

