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Today: A “Classic” Example of a Tradeoff

• A pre-deep-learning-revolution concept

• Q: How do to kernel learning?

• Many ways to set up the computation
• are mathematically equivalent, 
• but not computationally equivalent 
• or numerically equivalent



Basic Linear Models

• For two-class classification using model vector w

• What is the compute cost of making a prediction 
in a d-dimensional linear model, given an 
example x?

• Answer: d multiplies and d adds
• To do the dot product.



Optimizing Basic Linear Models

• For classification using model vector w

• Optimization methods for this task vary; here’s logistic 
regression



SGD on Logistic Regression

• Gradient of a training example is

• So SGD update step is



What is the compute cost of an SGD update?

• For logistic regression on a d-dimensional model

• Answer: 2d multiples and 2d adds + O(1) extra 
ops
• d multiplies and d adds to do the dot product
• d multiplies and d adds to do the AXPY operation
• O(1) additional ops for computing the exp, divide, etc.



Benefits of Linear Models
• Fast classification: just one dot product

• Fast training/learning: just a few basic linear algebra 
operations

• Drawback: limited expressivity
• Can only capture linear classification boundaries → bad for many 

problems

• How do we let linear models represent a broader class of 
decision boundaries, while retaining the systems 
benefits?



Review: The Kernel Method

• Idea: in a linear model we can think about the similarity 
between two training examples x and y as being

• This is related to the rate at which a random classifier will 
separate x and y 

• Kernel methods replace this dot-product similarity with 
an arbitrary Kernel function that computes the 
similarity between x and y



Kernel Properties

• What properties do kernels need to have to be useful 
for learning?

• Key property: kernel must be symmetric

• Key property: kernel must be positive semi-definite

• Can check that the dot product has this property



Facts about Positive Semidefinite Kernels

• Sum of two PSD kernels is a PSD kernel

• Product of two PSD kernels is a PSD kernel

• Scaling by any function on both sides is a kernel



Other Kernel Properties

• Useful property: kernels are often non-negative

• Useful property: kernels are often scaled such that

• These properties capture the idea that the kernel is expressing 
the similarity between x and y



Common Kernels

• Gaussian kernel/RBF kernel: de-facto kernel in 
machine learning

• We can validate that this is a kernel
• Symmetric? 
• Positive semi-definite?  
• Non-negative? 
• Scaled so that K(x,x) = 1? 



Common Kernels (continued)

• Linear kernel: just the inner product

• Polynomial kernel:

• Laplacian kernel:



Kernels as a feature mapping

• More generally, any function that can be written in 
the form

  (where                           is called a feature map) is a 
kernel.

• Even works for maps onto infinite dimensional 
Hilbert space
• And in this case the converse is also true: any kernel has 

an associated (possibly infinite-dimensional) feature map.



Classifying with Kernels

• Recall the SGD update is

• Resulting weight vectors will always be in the span of the 
examples.

• So, our prediction will be:



Classifying with Kernels

• An equivalent way of writing a linear model on a 
training set is

• We can kernel-ize this by replacing the dot 
products with kernel evaluations



Learning with Kernels

• An equivalent way of writing linear-model 
logistic regression is

• We can kernel-ize this by replacing the dot 
products with kernel evaluations



The Computational Cost of Kernels

• Recall: benefit of learning with kernels is that we can 
express a wider class of classification functions

• Recall: another benefit is linear classifier learning problems 
are “easy” to solve because they are convex, and gradients 
easy to compute

• Major cost of learning naively with Kernels: have to 
evaluate K(x, y)
• For SGD, need to do this effectively n times per update
• Computationally intractable unless K is very simple



The Gram Matrix

• Address this computational problem by pre-computing the 
kernel function for all pairs of training examples in the 
dataset.

• Transforms the logistic regression learning problem into 

• This is much easier than re-computing the kernel at each iteration



Problems with the Gram Matrix

• Suppose we have n examples in our training set.

• How much memory is required to store the Gram 
matrix G?

• What is the cost of taking the product Gi w to compute 
a gradient?

• What happens if we have one hundred million training 
examples?



Feature Extraction

• Simple case: let’s imagine that X is a finite set {1, 2, …, k}

• We can define our kernel as a matrix

• Since M is positive semidefinite, it has a square root



Feature Extraction (continued)

• So if we define a feature mapping                    then 

• The kernel is equivalent to a dot product in some space

• As we noted above, this is true for all kernels, not just 
finite ones
• Just with a possibly infinite-dimensional feature map



Classifying with feature maps

• Suppose that we can find a finite-dimensional feature 
map that satisfies

• Then we can simplify our classifier to



Learning with feature maps
• Similarly we can simplify our learning objective to

• Take-away: this is just transforming the input data, then 
running a linear classifier in the transformed space!

• Computationally: super efficient
• As long as we can transform and store the input data in an efficient 

way



Problems with feature maps

• The dimension of the transformed data may be much larger 
than the dimension of the original data.

• Suppose that the feature map is                       and there are n 
examples

• How much memory is needed to store the transformed 
features?

• What is the cost of taking the product                to compute a 
gradient?



Feature maps vs. Gram matrices

• Interesting systems trade-offs exist here.

• When number of examples gets very large, feature 
maps are better.

• When transformed feature vectors have high 
dimensionality, Gram matrices are better.



Another Problem with Feature Maps

• Recall: I said there was always a feature map for any kernel 
such that

• But this feature map is not always finite-dimensional
• For example, the Gaussian/RBF kernel has an infinite-dimensional 

feature map
• Many kernels we care about in ML have this property

• What do we do if ɸ has infinite dimensions?
• We can’t just compute with it normally!



Solution: Approximate feature maps

• Find a finite-dimensional feature map so that

• Typically, we want to find a family of feature maps ɸt 
such that



Types of approximate feature maps

• Deterministic feature maps
• Choose a fixed-a-priori method of approximating the kernel
• Generally not very popular because of the way they scale with 

dimensions

• Random feature maps
• Choose a feature map at random (typically each feature is 

independent) such that

• Then prove with high probability that over some region of 
interest



Types of Approximate Features (continued)

• Orthogonal randomized feature maps
• Intuition behind this: if we have a feature map where for some i and j

then we can’t actually learn much from including both features in 
the map.

• Strategy: choose the feature map at random, but subject to the 
constraint that the features be statistically “orthogonal” in some way.

• Quasi-random feature maps
• Generate features using a low-discrepancy sequence rather than 

true randomness



Adaptive Feature Maps

• Everything before this didn’t take the data into account

• Adaptive feature maps look at the actual training set and 
try to minimize the kernel approximation error using the 
training set as a guide
• For example: we can do a random feature map, and then fine-tune 

the randomness to minimize the empirical error over the training 
set

• Gaining in popularity

• Also, neural networks can be thought of as adaptive feature 
maps.



Summary: Many Ways to Learn Linear Models

• Options for representing features:
• Learn with an exact feature map
• Learn with a kernel
• Learn with an approximate feature map

• Other choices:
• Pre-compute feature map/Gram matrix and store in memory
• Re-compute feature map/kernel value at each iteration



Systems Tradeoffs

• Lots of tradeoffs here

• Do we spend more work up-front constructing a more 
sophisticated approximation, to save work on learning 
algorithms?

• Would we rather scale with the data, or scale to more 
complicated problems?

• Another task for hyperparameter optimization



Demo



Is this still used today?

• Yes!

• People still use this trick in low-dimensional applications 
such as 3D modeling/graphics

• The basis for efficient “linear attention” mechanisms



Dimensionality reduction



Linear models are linear in the dimension

• But what if the dimension d is very large?
• Example: if we have a high-dimensional kernel map

• It can be difficult to run SGD when the 
dimension is very high even if the cost is linear
• This happens for other learning algorithms too



Idea: reduce the dimension

• If high dimension is the problem, can we just reduce 
d?

• This is the problem of dimensionality reduction.

• Dimensionality reduction benefits both statistics 
and systems
• Statistical side: can help with generalization by 

identifying important subset of features
• Systems side: lowers compute cost



Techniques for dimensionality reduction

• Feature selection by hand
• Simple method
• But costly in terms of human effort

• Principal component analysis (PCA)
• Identify the directions of highest variance in the 

dataset
• Then project onto those directions
• Many variants: e.g. kernel PCA



More techniques for dimensionality reduction

• Locality-sensitive hashing (LSH)
• Hash input items into buckets so close-by elements map 

into the same buckets with high probability
• Many methods of doing this too

• Johnson-Lindenstrauss transform (random 
projection)
• General method for reducing dimensionality of any 

dataset
• Just choose a random subspace and project onto that 

subspace



Johnson-Lindenstrauss lemma

In fact, a randomly chosen linear map T
works with high probability!



Consequences of J-L transform

• We only need O(log(m) / ε2) dimensions to map a 
dataset of size m with relative distance accuracy.
• No matter what the size of the input dataset was!

• This is a very useful result for many applications
• Provides a generic way of reducing the dimension with 

guarantees

• But there are more specialized data-dependent 
ways of doing dimensionality reduction that can 
work better.



Autoencoders

• Use deep learning to learn two models
• The encoder, which maps an example to a dimension-reduced 

representation
• The decoder, which maps it back

• Train to minimize the distance between encoded-and-
decoded examples and the original example.



Questions

• Upcoming things:
• Paper 1a or 1b review due on Monday
• Papers 2a/2b in class on Monday
• Start thinking about the class project

• It will come faster than you think!
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