CS6787: Advanced Machine

Learning Systems

CS6787 Lecture 1 — Spring 2026

=@=

this course

What’s missing in the basic stutt?

Efticiency!
Scalability!

Motivation:

Machine learning applications
involve large amounts of data

More data = Better services

Better systems = More data

How do practitioners make
their systems better?

How do we improve our systems?

Course outline

» Build frameworks/software that make it easy to express &
train a machine learning/deep learning model.

Part 11

N\

* Use methods for accelerating convergence of learning
algorithms — learn in fewer iterations.

Part 23

N

« Automatically configure learning systems by using
hyperparameter optimization

Part 33

N\

» Use large pre-trained models to improve performance of
downstream tasks — “foundation models”

Part 43

N

» Use methods for improving hardware efficiency — run
each iteration faster, with less energy, etc.

Part Sj

Course Format

One half

Traditional lectures

Broad description of
techniques

One half

Important papers
Presentations by you
IN-class discussions
Reviews of each paper

Prerequisites

* Basic ML knowledge (CS 3780)

» Math/statistics knowledge
¢ At the level of the entrance exam for CS 3780

* Also useful, but not a prerequisite:

- Knowledge of computer systems, computer
hardware, NLP, and computer vision

Grading

* Paper presentations

* Discussion participation

» Paper reviews
 Programming assignments

* Final project

Paper presentations

» Papers listed on the website
« 20-minute presentation slot for each paper
* Presenting in groups of two-to-three

* Sighups by Monday!

* Survey Is on the website

- Learning goal:

* Practice digesting, unpacking, and talking about other
people’s work

Paper Reading and Discussion

« Fach presentation is followed by a period of questions and
breakout discussion

» Please read at least one of the papers before class
 And at least skim the other paper, so you know what to expect

* Note: grade is not for attendance, but rather on
participation and bringing insightful ideas to the table

- Learning goal: practice how to deeply read and critique
a paper In context

Paper Reviews

« For each class period, submit a mock review of one of the
two papers

* (Only If you are not presenting.)

* Review the paper as if you were doing peer review on
a hewly submitted work

* Reviews due a few days after our in-class discussion

« Learning goal: build technical reading and writing skills,
and get some sense of how peer review works.

Programming Assignments

* TWwo short assignments in the first part of the
semester only

« Learning goal: become familiar with ML
frameworks/tools
. ...and the principles that underlie them
« This will build skills for the final project
- Especially useful for folks from non-CS background

Do you guys already know
PyTorch and deep learning?

Final Project

* Open-ended: work on what you think is interesting!
« Learning goal: do a bit of non-trivial research on your own

* Groups of up to three

* Your proposed project must include:

. Ihekimplementation of a machine learning system for some
as

« Exploring one or more of the techniques discussed in the
course

« To empirically evaluate performance and compare with a
baseline, using both a ML-side and systems-side metric

Late Policy

* This is a graduate level course

* Two free late days for each of the paper reviews and
programming assignments

* No |late days on the final project
 To make things easy on the graders

* No late days on the presentations (for obvious reasons)

Questions?

Today’s Topic

Stochastic Gradient Descent: The
Workhorse of Machine Learning

CS6787 Lecture 1 — Spring 2026

But first...an icebreaker activity!

For each person:
* What Is your name?
* What are you studying?
 What do you hope to learn from CS6787?

Then discuss together:

Why do we use stochastic gradient descent?
(And its related algorithms: Adam, AdaGrad, etc.)

Optimization

« Much of machine learning can be written as an optimization
problem

loss function

=

n
min l Z f(w -)% training
model % wERE N » examples
1=1

« Example loss functions: logistic regression, linear regression,
principal component analysis, neural network loss, empmcal
risk minimization

Types of Optimization

« Convex optimization
* The easy case

* Includes logistic regression, linear regression,
SVM

A good strategy for ML optimization:

Build theoretical intuition about

* Non-convex o ptl Mizatic techniques from the convex case where
e NP-hard in general we can prove things...
e Includes dee o learni Nng ...and apply it to better understand

more complicated systems.

An Abridged Introduction to

Convex Functions

Convex Functions

Va € [0,1], flax + (1 —a)y) < af(z) + (1 —a)f(y)

4.5
4
f(z) =2
3
2.5
2
1.5
1
0.5

O
-3 -2 -1 o 1 2 3

Example: Quadratic

f(a) = 2?

(axz + (1 — a)y)? = oz + 2a(1 — a)zy + (1 — a)?y?
= az’ + (1 —a)y® — a(l — a)(z? + 2zy + y°)
<az®+ (1 —a)y?

Example: Abs

f(z) = ||

oz + (1 —a)y| < |ax| + |(1 - a)y
= ajr|+ (I —a)ly

Example: Exponential

flz) = e

=1

Properties of convex functions

* Any line segment we draw between two points lies
above the curve

« Corollary: every local minimum is a global minimum
* Why?

* This is what makes convex optimization easy

e |t suffices to find a local minimum, because we know it will be
global

Properties of convex functions (continued)

« Non-negative combinations of convex functions are convex

hz) = af(x)+ bg(x)
« Affine scalings of convex functions are convex
h(z) = f(Az + b)

« Compositions of convex functions are NOT generally convex
* Neural nets are like this

Convex Functions: Alternative Definitions

* First-order condition

@ -y, Vf(z)=Vf(y) =0
« Second-order condition
Vif(z) = 0

* This means that the matrix of second derivatives is positive
semidefinite

Ar»0& Ve, (x, Ax) > 0

Example: Quadratic

Example: Exponential

Example: Logistic Loss

f(x) = log(1 + e*)

Strongly Convex Functions

» Basically the easiest class of functions for optimization
* First-order condition:

(x —y,Vf(z) = Vf(y) > pllz—y|

e Second-order condition;

Vif(x) = pl

* Equivalently:

h(z) = f(z) — &|l=||* is convex

Which of the functions we’ve looked at are

strongly convex? J

Which of the functions we’ve looked at are

strongly convex? J

Concave functions

* A function is concave Iif its negation is convex

f is convex < h(x) = —f(x) is concave

« Example: f(x) = log(z)

Why care about convex functions?

Convex Optimization

e Goal Is to minimize a convex function

4.5
3.5
2.5

1.5

0.5

Gradient Descent

4.5

3.5

2.5

1.5

0.5

w 4+ w — aV f(w)

Gradient Descent Converges

* A simple proof, but not necessarily the best rate.

* [terative definition of gradient descent

Wit+1 =— Wt — onf(wt)

« Assumptions/terminology:
Global optimum is z*

Bounded second derivative ul < V4 f(x) < LI

Gradient Descent Converges (continued)

Wi —w =wg —w —a(Vf(w)—Vflw))
= wy —w* — aV2f(G) (wp — w™)
= (I —aV?f(¢)) (wy — w*).
Taking the norm
lwipr — w*|| < [T —aV2f(¢) N A |

< max(|1 — apl, [1 — aL]) - e — w"]|

Gradient Descent Converges (continued)

e Soifweset x = 2/(L + ,u) then

Nwe = w?|

* And recursively

K
lwg —will < {7777) - llwo — v’

« Called convergence at a linear rate or sometimes
(confusingly) exponential rate

The Problem with Gradient Descent

* Large-scale optimization
1 n
h(w) = — 3 flw;,)
1=1

« Computing the gradient takes O(n) time

Vh(w) = = 3" Vi (w;z)

Gradient Descent with More Data

« Suppose we add more examples to our training set

« For simplicity, imagine we just add an extra copy of every training
example

Vh(w ZVf w; ;) ;ﬂj;vf(w;xi)

« Same objective functlon
« But gradients take 2x the time to compute (unless we cheat)

 We want to scale up to huge datasets, so how can we do
this?

Stochastic Gradient Descent

* |dea: rather than using the full gradient, just use one

training example
« Super fast to compute

Wt41 — Wt — onf(wt, lez‘t)

* [N expectation, it's just gradient descent
Elwi 1] = Elw] — o - E[V f(wy, 3,)]

1 (2
= Elw;] — - m ;Vf(wt,xi)

This is an example
selected uniformly at
random from the dataset.

Stochastic Gradient Descent Convergence

« Can SGD converge using just one example to estimate

the gradient?
wir1 —w =w —w" —a(Vh(wy) — Vh(w®)) — a(Vf(ws; x;,) — Vh(wy))

= (I — aV?h(&)) (we — w*) — a (V f(wg; 23,) — Vh(wy))

« How do we handle this extra noise term??

« One answer: bound it using the second moment!

Stochastic Gradient Descent Convergence

E |:Hwt_|_1 — w*HQ} =E (I = aV2h(¢)) (wr — w*) — o (V f(wy; 23,) — Vh(wt))‘ﬂ
=B [||(1 - aV2h(¢)) (we — 0|’
_%ﬂgBVf@%xﬂ)—V%@m»T(f—aV%KQ»(wy—wﬂ}

+o’E [H(Vf(wt' Ti,) — Vh(wt))uz}

=B (|1~ av*n(6) (e — w)|] + 0% [I(V ez i) — P

< (1—ap)? -E[Hwt—w || } +a2M

assuming small enough o and the bound E [H(Vf(w; T;) — Vh(w))Hz} <M

Stochastic Gradient Descent Convergence

» Already we can see that this converges to a fixed point of

M
lim E [||wt—w*u2} < T
t—00 21 — o

« This phenomenon is called converging to a noise ball

« Rather than approaching the optimum, SGD (with a constant step
size) converges to a region of low variance around the optimum

* This is okay for a lot of applications that only need approximate
solutions

Stochastic gradient descent
is super popular.

But how SGD is implemented in
practice is not exactly what ’ve
just shown you...

...and we’ll see how it’s different
in the upcoming lectures.

To Do

* |f you have any papers you particularly want us to cover
or topics you think might be interesting, send me an
emalil before noon-ish tomorrow.

* Be on the lookout for an email with the paper
presentation signup survey.

	Slide 1: CS6787: Advanced Machine Learning Systems
	Slide 2
	Slide 3: What’s missing in the basic stuff? Efficiency! Scalability!
	Slide 4: Motivation: Machine learning applications involve large amounts of data More data  Better services Better systems  More data
	Slide 5: How do practitioners make their systems better?
	Slide 6: How do we improve our systems?
	Slide 7: Course Format
	Slide 8: Prerequisites
	Slide 9: Grading
	Slide 10: Paper presentations
	Slide 11: Paper Reading and Discussion
	Slide 12: Paper Reviews
	Slide 13: Programming Assignments
	Slide 14: Do you guys already know PyTorch and deep learning?
	Slide 15: Final Project
	Slide 16: Late Policy
	Slide 17: Questions?
	Slide 18: Today’s Topic Stochastic Gradient Descent: The Workhorse of Machine Learning
	Slide 19: But first…an icebreaker activity!
	Slide 20: Optimization
	Slide 21: Types of Optimization
	Slide 22: An Abridged Introduction to Convex Functions
	Slide 23: Convex Functions
	Slide 24: Example: Quadratic
	Slide 25: Example: Abs
	Slide 26: Example: Exponential
	Slide 27: Properties of convex functions
	Slide 28: Properties of convex functions (continued)
	Slide 29: Convex Functions: Alternative Definitions
	Slide 30: Example: Quadratic
	Slide 31: Example: Exponential
	Slide 32: Example: Logistic Loss
	Slide 33: Strongly Convex Functions
	Slide 34: Which of the functions we’ve looked at are strongly convex?
	Slide 35: Which of the functions we’ve looked at are strongly convex?
	Slide 36: Concave functions
	Slide 37: Why care about convex functions?
	Slide 38: Convex Optimization
	Slide 39: Gradient Descent
	Slide 40: Gradient Descent Converges
	Slide 41: Gradient Descent Converges (continued)
	Slide 42: Gradient Descent Converges (continued)
	Slide 43: The Problem with Gradient Descent
	Slide 44: Gradient Descent with More Data
	Slide 45: Stochastic Gradient Descent
	Slide 46: Stochastic Gradient Descent Convergence
	Slide 47: Stochastic Gradient Descent Convergence
	Slide 48: Stochastic Gradient Descent Convergence
	Slide 49: Stochastic gradient descent is super popular.
	Slide 50: But how SGD is implemented in practice is not exactly what I’ve just shown you…
	Slide 51: To Do

