Adaptive Methods and Non-convex Optimization

CS6787 Lecture 5 — Spring 2024

Adaptive learning rates

So far, we've looked at update steps that look like

$$w_{t+1} = w_t - \alpha_t \nabla f_t(w_t)$$

 Here, the learning rate/step size is fixed a priori for each iteration.

 What if we use a step size that varies depending on the model?

This is the idea of an adaptive learning rate.

Example: Polyak's step length

 This is an simple step size scheme for gradient descent that works when the optimal value is known.

$$\alpha_k = \frac{f(w_k) - f(w^*)}{\|\nabla f(w_k)\|^2}$$

• Can also use this with an estimated optimal value.

Intuition: Polyak's step length

 Approximate the objective with a linear approximation at the current iterate.

$$\hat{f}(w) = f(w_k) + (w - w_k)^T \nabla f(w_k)$$

 Choose the step size that makes the approximation equal to the known optimal value.

$$f^* = \hat{f}(w_{k+1}) = \hat{f}(w_k - \alpha \nabla f(w_k)) = f(w_k) - \alpha ||\nabla f(w_k)||^2 \Rightarrow \alpha = \frac{f(w_k) - f^*}{||\nabla f(w_k)||^2}$$

Example: Line search

• Idea: just choose the step size that minimizes the objective.

$$\alpha_k = \arg\min_{\alpha>0} f(w_k - \alpha \nabla f(w_k))$$

- Only works well for gradient descent, not SGD.
- Why?
 - SGD moves in random directions that don't always improve the objective.
 - Doing line search on full objective is expensive relative to SGD update.

Adaptive methods for SGD

- Several methods exist
 - AdaGrad
 - AdaDelta
 - RMSProp
 - Adam
- You'll see Adam in one of next Wednesday's papers

AdaGrad

Adaptive gradient descent

Per-parameter adaptive learning rate schemes

 Main idea: set the learning rate per-parameter dynamically at each iteration based on observed statistics of the past gradients.

$$(w_{t+1})_j = (w_t)_j - \alpha_{j,t} (\nabla f(w_t; x_t))_j$$

- Where the step size now depends on the parameter index **j**
- Corresponds to a multiplication of the gradient by a diagonal scaling matrix.
- There are many different schemes in this class

AdaGrad: One of the first adaptive methods

- AdaGrad: Adaptive subgradient methods for online learning and stochastic optimization
 - J Duchi, E Hazan, Y Singer
 - Journal of Machine Learning Research, 2011
- High level approach: can use history of sampled gradients to choose the step size for the next SGD step to be inversely proportional to the usual magnitude of gradient steps in that direction
 - On a per-parameter basis.

AdaGrad

Algorithm 1 AdaGrad

input: learning rate factor η , initial parameters w_0 initialize $t \leftarrow 0$

loop

sample a stochastic gradient $g_t \leftarrow \nabla f(w_t; x_t)$ update model: for all $j \in \{1, \dots, d\}$

$$(w_{t+1})_j \leftarrow (w_t)_j - \frac{\eta}{\sqrt{\sum_{k=0}^t (g_t)_j^2 + \epsilon}} \cdot g_j$$

 $t \leftarrow t + 1$
end loop

Can think of this as like the norm of the gradients in the jth parameter.

Memory-efficient implementation of AdaGrad

Algorithm 1 AdaGrad

```
input: learning rate factor \eta, initial parameters w_0 \in \mathbb{R}^d, small number \epsilon initialize t \leftarrow 0 initialize r \leftarrow 0 \in \mathbb{R}^d loop
```

sample a stochastic gradient $g_t \leftarrow \nabla f(w_t; x_t)$ accumulate second moment estimate $r_j \leftarrow r_j + (g_t)_j^2$ for all $j \in \{1, \ldots, d\}$ update model: for all $j \in \{1, \ldots, d\}$

$$(w_{t+1})_j \leftarrow (w_t)_j - \frac{\eta}{\sqrt{r_j} + \epsilon} \cdot g_j$$

 $t \leftarrow t + 1$ end loop

Important thing to notice: step size is monotonically decreasing!

Demo

AdaGrad for Non-convex Optimization

- What problems might arise when using AdaGrad for non-convex optimization?
 - Think about the step size always decreasing. Could this cause a problem?

 If you do think of a problem that might arise, how could you change AdaGrad to fix it?

RMSProp

Algorithm 1 RMSProp

input: learning rate factor η , initial parameters $w_0 \in \mathbb{R}^d$, initialize $t \leftarrow 0$

initialize $r \leftarrow 0 \in \mathbb{R}^d$

loop

sample a stochastic gradient $g_t \leftarrow \nabla f(w_t; x_t)$

accumulate second moment estimate $r_j \leftarrow \rho \cdot r_j + (1 - \rho) (g_t)_j^2$ for all

 $j \in \{1, \dots, d\}$

update model: for all $j \in \{1, ..., d\}$

$$(w_{t+1})_j \leftarrow (w_t)_j - \frac{\eta}{\sqrt{r_j} + \epsilon} \cdot g_j$$

 $t \leftarrow t + 1$
end loop

Just replaces the gradient accumulation of AdaGrad with an exponential moving average.

A systems perspective

- What is the computational cost of AdaGrad and RMSProp?
 - How much additional memory is required compared to baseline SGD?
 - How much additional compute is used?

Adaptive methods, summed up

- Generally useful when we can expect there to be different scales for different parameters
 - But can even work well when that doesn't happen, as we saw in the demo.
- Very commonly used class of methods for training ML models.
- We'll see more of this when we study Adam on Wednesday
 - Adam is basically RMSProp + Momentum.

Algorithms other than SGD

Machine learning is not just SGD

- Once a model is trained, we need to use it to classify new examples
 - This inference task is not computed with SGD
- There are other algorithms for optimizing objectives besides SGD
 - Stochastic coordinate descent
 - Derivative-free optimization
- There are other common tasks, such as sampling from a distribution
 - Gibbs sampling and other Markov chain Monte Carlo methods
 - And we sometimes use this together with SGD → called contrastive divergence

Why understand these algorithms?

- They represent a significant fraction of machine learning computations
 - Inference in particular is huge
- You may want to use them instead of SGD
 - But you don't want to suddenly pay a computational penalty for doing so because you don't know how to make them fast
- Intuition from SGD can be used to make these algorithms faster too
 - And vice-versa

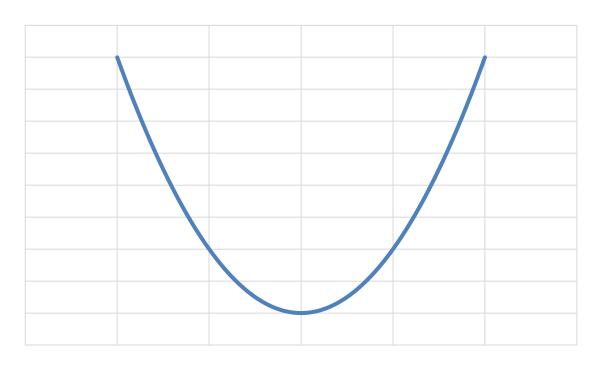
Review — We've covered many methods

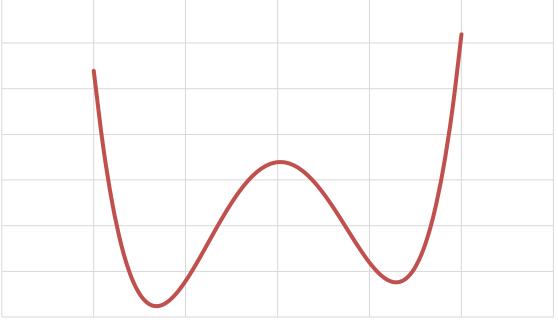
- Stochastic gradient descent
- Mini-batching
- Momentum

- Nice convergence proofs that give us a rate
- But only for convex problems!

Non-Convex Problems

Anything that's not convex





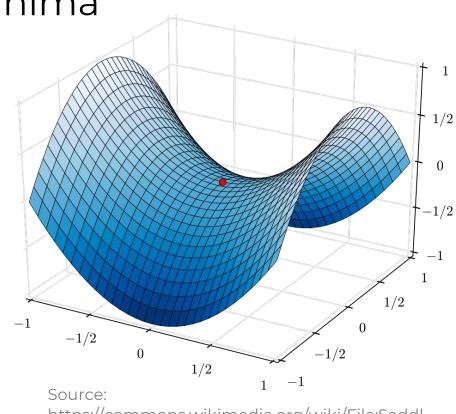
What makes non-convex optimization hard?

Potentially many local minima

Saddle points

Very flat regions

• Widely varying curvature -1



Source: https://commons.wikimedia.org/wiki/File:Saddl e_point.svg

But is it actually that hard?

- Yes, non-convex optimization is at least NP-hard
 - Can encode most problems as non-convex optimization problems

- Example: subset sum problem
 - Given a set of integers, is there a non-empty subset whose sum is zero?
 - Known to be NP-complete.
- How do we encode this as an optimization problem?

Subset sum as non-convex optimization

- Let a₁, a₂, ..., a_n be the input integers
- Let x_1 , x_2 , ..., x_n be 1 if a_i is in the subset, and 0 otherwise
- Objective:

minimize
$$(a^T x)^2 + \sum_{i=1}^{n} x_i^2 (1 - x_i)^2$$

• What is the optimum if subset sum returns true? What if it's false?

So non-convex optimization is pretty hard

 There can't be a general algorithm to solve it efficiently in all cases

- Downsides: theoretical guarantees are weak or nonexistent
 - Depending on the application
 - There's usually no theoretical recipe for setting hyperparameters
- Upside: an endless array of problems to try to solve better
 - And gain theoretical insight about
 - And improve the performance of implementations

Examples of non-convex problems

• Matrix completion, principle component analysis

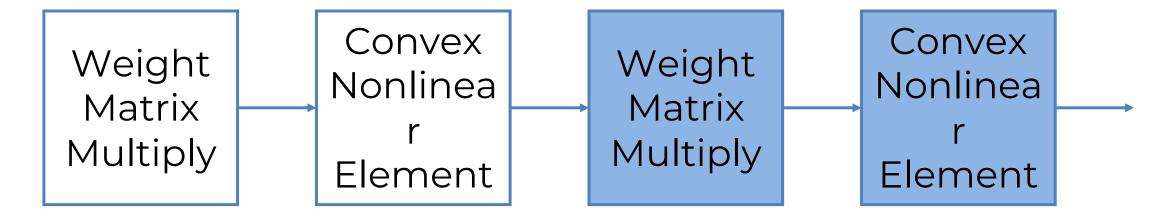
Low-rank models and tensor decomposition

- Maximum likelihood estimation with hidden variables
 - Usually non-convex

The big one: deep neural networks

Why are neural networks non-convex?

- They're often made of convex parts!
 - This by itself would be convex.



- Composition of convex functions is not convex
 - So deep neural networks also aren't convex

Why do neural nets need to be non-convex?

- Neural networks are universal function approximators
 - With enough neurons, they can learn to approximate any function arbitrarily well
- To do this, they need to be able to approximate nonconvex functions
 - Convex functions can't approximate non-convex ones well.
- Neural nets also have many symmetric configurations
 - For example, exchanging intermediate neurons
 - This symmetry means they can't be convex. Why?

How to solve non-convex problems?

- Can use many of the same techniques as before
 - Stochastic gradient descent
 - Mini-batching
 - SVRG
 - Momentum
- There are also specialized methods for solving non-convex problems
 - Alternating minimization methods
 - Branch-and-bound methods
 - These generally aren't very popular for machine learning problems

Varieties of theoretical convergence results

Convergence to a stationary point

Convergence to a local minimum

Local convergence to the global minimum

Global convergence to the global minimum

Non-convex Stochastic Gradient Descent

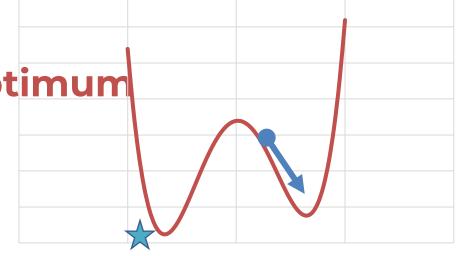
Stochastic Gradient Descent

• The update rule is the same for non-convex functions

$$w_{t+1} = w_t - \alpha_t \nabla \tilde{f}_t(w_t)$$

Same intuition of moving in a direction that lowers objective

- Doesn't necessarily go towards optimum
 - Even in expectation



Non-convex SGD: A Systems Perspective

- It's exactly the same as the convex case!
- The hardware doesn't care whether our gradients are from a convex function or not
- This means that all our intuition about computational efficiency from the convex case directly applies to the nonconvex case
- But does our intuition about statistical efficiency also apply?

When can we say SGD converges?

- First, we need to decide what type of convergence we want to show
 - Here I'll just show convergence to a stationary point, the weakest type
- Assumptions:
 - Second-differentiable objective $LI \preceq \nabla^2 f(x) \preceq LI$
 - Lipschitz-continuous gradients $\mathbf{E}\left[\left\|\nabla \tilde{f}_t(x) f(x)\right\|^2\right] \leq \sigma^2$ Noise has bounded variance
 - But no convexity assumption!

Convergence of Non-Convex SGD

Start with the update rule:

$$w_{t+1} = w_t - \alpha_t \nabla \tilde{f}_t(w_t)$$

 At the next time step, by Taylor's theorem, the objective will be

$$f(w_{t+1}) = f(w_t - \alpha_t \nabla \tilde{f}_t(w_t))$$

$$= f(w_t) - \alpha_t \nabla \tilde{f}_t(w_t)^T \nabla f(w_t) + \frac{\alpha_t^2}{2} \nabla \tilde{f}_t(w_t)^T \nabla^2 f(y_t) \nabla \tilde{f}_t(w_t)$$

Convergence (continued)

Taking the expected value

$$\mathbf{E}\left[f(w_{t+1})|w_t\right] \le f(w_t) - \alpha_t \mathbf{E}\left[\nabla \tilde{f}_t(w_t)^T \nabla f(w_t) \Big| w_t\right] + \frac{\alpha_t^2 L}{2} \mathbf{E}\left[\left\|\nabla \tilde{f}_t(w_t)\right\|^2 \Big| w_t\right]$$

So now we know how the expected value of the

objective evolves.
$$\mathbf{E}\left[f(w_{t+1})|w_t\right] \leq f(w_t) - \left(\alpha_t - \frac{\alpha_t^2 L}{2}\right) \left\|\nabla f(w_t)\right\|^2 + \frac{\alpha_t^2 \sigma^2 L}{2}.$$

• If we set α small enough that 1 - α L/2 > 1/2, then

$$\mathbf{E}\left[f(w_{t+1})|w_{t}\right] \leq f(w_{t}) - \frac{\alpha_{t}}{2} \|\nabla f(w_{t})\|^{2} + \frac{\alpha_{t}^{2} \sigma^{2} L}{2}.$$

Now taking the full expectation,

$$\mathbf{E}\left[f(w_{t+1})\right] \leq \mathbf{E}\left[f(w_t)\right] - \frac{\alpha_t}{2}\mathbf{E}\left[\left\|\nabla f(w_t)\right\|^2\right] + \frac{\alpha_t^2 \sigma^2 L}{2}.$$

And summing up over an epoch of length T

$$\mathbf{E}[f(w_T)] \le f(w_0) - \sum_{t=0}^{T-1} \frac{\alpha_t}{2} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right] + \sum_{t=0}^{T-1} \frac{\alpha_t^2 \sigma^2 L}{2}.$$

- Now we need to decide how to set the step size α_t
 - Let's just choose a constant step size for simplicity

So our bound on the objective becomes

$$\mathbf{E}[f(w_t)] \le f(w_0) - \frac{\alpha}{2} \sum_{t=0}^{T-1} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right] + \frac{\alpha^2 \sigma^2 LT}{2}$$

Rearranging the terms,

$$\frac{\alpha}{2} \sum_{t=0}^{T-1} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right] \le f(w_0) - \mathbf{E} [f(w_t)] + \frac{\alpha^2 \sigma^2 LT}{2}$$

$$\le f(w_0) - \left(\min_{w} f(w) \right) + \frac{\alpha^2 \sigma^2 LT}{2}$$

$$\le f(w_0) - f^* + \frac{\alpha^2 \sigma^2 LT}{2}$$

Now, we're kinda stuck

• How do we use the bound on this term to say something useful? $_{T-1}$

$$\frac{\alpha}{2} \sum_{t=0}^{T-1} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right]$$

- Idea: rather than outputting $\mathbf{w_T}$, instead output some randomly chosen $\mathbf{w_i}$ from the history.
- You might recall this trick from the proof in the SVRG paper. Let $z_T = w_t$ with probability 1/T for all $t \in \{0, \ldots, T-1\}$.

Using our randomly chosen output

Let $z_T = w_t$ with probability 1/T for all $t \in \{0, \ldots, T-1\}$.

So the expected value of the gradient at this point is

$$\mathbf{E} \left[\|\nabla f(z_T)\|^2 \right] = \sum_{t=0}^{T-1} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right] \cdot \mathbf{P}(z_T = w_t)$$
$$= \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{E} \left[\|\nabla f(w_t)\|^2 \right]$$

• Substituting this back into our previous bound gives us

$$\frac{\alpha T}{2} \mathbf{E} \left[\|\nabla f(z_T)\|^2 \right] \le f(w_0) - f^* + \frac{\alpha^2 \sigma^2 LT}{2}$$

And this simplifies to

$$\mathbf{E}\left[\|\nabla f(z_T)\|^2\right] \le \frac{2(f(w_0) - f^*)}{\alpha T} + \frac{\alpha \sigma^2 L}{2}$$

 Now, if we know that we are going to run for T iterations, we can set the step size to minimize this expression

$$\mathbf{E}\left[\|\nabla f(z_T)\|^2\right] \le \frac{2(f(w_0) - f^*)}{\alpha T} + \frac{\alpha \sigma^2 L}{2}$$

$$\alpha = \frac{c}{\sqrt{T}} \Rightarrow \mathbf{E} \left[\|\nabla f(z_T)\|^2 \right] \le \frac{1}{\sqrt{T}} \cdot \left(\frac{2(f(w_0) - f^*)}{c} + \frac{c\sigma^2 L}{2} \right)$$

Convergence Takeaways

- So even non-convex SGD converges!
 - In the sense of getting to points where the gradient is arbitrarily small
- But this doesn't mean it goes to a local minimum!
 - Doesn't rule out that it goes to a saddle point, or a local maximum.
 - Doesn't rule out that it goes to a region of very flat but nonzero gradients.
- · Certainly doesn't mean that it finds the global optimum
- And the theoretical rate here was slow $1/\sqrt{T}$

Strengthening these theoretical results Convergence to a local minimum

- Under stronger conditions, can prove that SGD converges to a local minimum
 - For example using the strict saddle property (Ge et al 2015)
- Using even stronger properties, can prove that SGD converges to a local minimum with an explicit convergence rate of 1/T
- But, it's unclear whether common classes of nonconvex problems, such as neural nets, actually satisfy these stronger conditions.

Strengthening these theoretical results Local convergence to the global minimum

 Another type of result you'll see are local convergence results

 Main idea: if we start close enough to the global optimum, we will converge there with high probability

- Results often give explicit initialization
 scheme that is guaranteed to be close
 - But it's often expensive to run
 - And limited to specific problems

Strengthening these theoretical results Global convergence to a global minimum

- The strongest result is convergence no matter where we initialize
 - Like in the convex case
- To prove this, we need a global understanding of the objective
 - So it can only apply to a limited class of problems
- For many problems, we know empirically that this doesn't happen
 - Deep neural networks are an example of this

Other types of results

- Bounds on generalization error
 - Roughly: we can't say it'll converge, but we can say that it won't overfit
- Ruling out "spurious local minima"
 - Minima that exist in the training loss, but not in the true/test loss.
- Results that use the Hessian to escape from saddle points
 - By using it to find a descent direction, but rarely enough that it doesn't damage the computational efficiency

Deep Learning as Non-Convex Optimization

Or, "what could go wrong with my non-convex learning algorithm?"

Lots of Interesting Problems are Non-Convex

- Including deep neural networks
- Because of this, we almost always can't prove convergence or anything like that when we run backpropagation (SGD) on a deep net
- But can we use intuition from PCA and convex optimization to understand what could go wrong when we run non-convex optimization on these complicated problems?

What could go wrong? We could converge to a bad local minimum

- Problem: we converge to a local minimum which is bad for our task
 - Often in a very steep potential well
- One way to debug: re-run the system with different initialization
 - Hopefully it will converge to some other local minimum which might be better
- Another way to debug: add extra noise to gradient updates
 - Sometimes called "stochastic gradient Langevin dynamics"
 - Intuition: extra noise pushes us out of the steep potential well

What could go wrong? We could converge to a saddle point

- Problem: we converge to a saddle point, which is not locally optimal
- Upside: usually doesn't happen with plain SGD
 - Because noisy gradients push us away from the saddle point
 - But can happen with more sophisticated SGD-like algorithms
- One way to debug: find the Hessian and compute a descent direction

What could go wrong?

We get stuck in a region of low gradient magnitude

- Problem: we converge to a region where the gradient's magnitude is small, and then stay there for a very long time
 - Might not affect asymptotic convergence, but very bad for real systems
- One way to debug: use specialized techniques like batchnorm
 - There are many methods for preventing this problem for neural nets
- Another way to debug: design your network so that it doesn't happen
 - Networks using a **RELU activation** tend to avoid this problem

What could go wrong?

Due to high curvature, we do huge steps and diverge

- Problem: we go to a region where the gradient's magnitude is very large, and then we make a series of very large steps and diverge
 - Especially bad for real systems using floating point arithmetic
- One way to debug: use adaptive step size
 - Like we did for PCA
 - Adam (which we'll discuss on Wednesday) does this sort of thing
- A simple way to debug: just limit the size of the gradient step
 - But this can lead to the low-gradient-magnitude issue

Takeaway

- Non-convex optimization is hard to write theory about
- But it's just as easy to compute SGD on
 - This is why we're seeing a renaissance of empirical computing
- We can use the techniques we have discussed to get speedup here too
- We can apply intuition from the convex case and from simple problems like PCA to learn how these techniques work