Distributed Learning

CS6787 Lecture 9 — Fall 2021

Main idea: use multiple machines to do learning.

Why distribute?

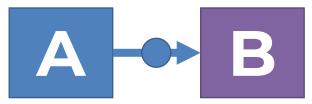
- Train more quickly
- Train models too large to fit on one machine
- Train when the data are inherently distributed

Distributed computing basics

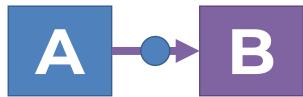
- Distributed parallel computing involves two or more machines collaborating on a single task by communicating over a network.
 - Distributed computing requires explicit (i.e. written in software) communication among the workers.
 - No shared memory abstraction! (Unlike parallelism on 1 machine)
- There are a few basic patterns of communication that are used by distributed programs.

Basic patterns of distributed communication

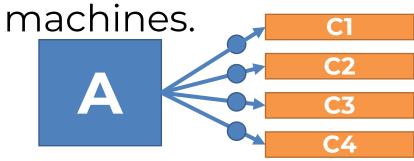
Push: Machine A sends some data to machine B.



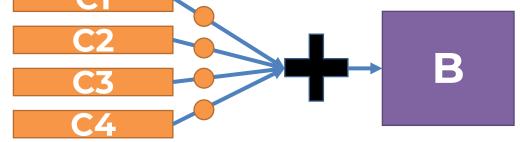
Pull: Machine A requests some data from machine B.



Broadcast: Machine A sends data to many

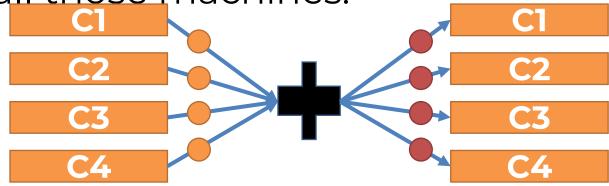


Reduce: Compute some reduction of data on multiple machines and materialize result on B.



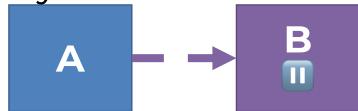
Basic patterns of distributed communication (cont'd)

All-reduce: Compute some reduction of data on multiple machines and materialize result on all those machines.

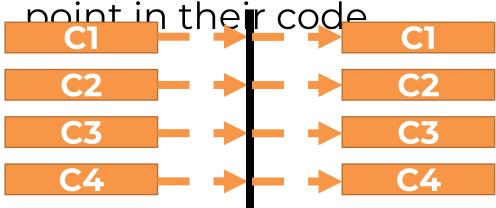


All these operations can be synchronous or asynchronous.

Wait: Pause until another machine says to continue.



Barrier: Wait for all workers to reach some



Overlapping computation and communication

- Communicating over the network can have high latency
 - we want to hide this latency
- An important principle of distributed computing is overlapping computation and communication
- For the best performance, we want our workers to still be doing useful work while communication is going on
 - rather than having to stop and wait for the communication to finish
 - sometimes called a stall
 - asynchronous communication can help a lot here

Running SGD with All-reduce

 All-reduce gives us a simple way of running learning algorithms such as SGD in a distributed fashion.

 Simply put, the idea is to just parallelize the minibatch. We start with an identical copy of the parameter on each worker.

• Recall that SGD update step looks like:
$$w_{t+1} = w_t - \alpha_t \cdot \frac{1}{B} \sum_{b=1}^{L} \nabla f_{i_{b,t}}(w_t),$$

Running SGD with All-reduce (continued)

• If there are M worker machines such that $B = M \cdot B'$, then

$$w_{t+1} = w_t - \alpha_t \cdot \frac{1}{M} \sum_{m=1}^{M} \frac{1}{B'} \sum_{b=1}^{B'} \nabla f_{i_{m,b,t}}(w_t).$$

- Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when m = 2 to worker 2, et cetera.
- After all the gradients are computed, we can perform the outer sum with an **all-reduce operation**.

Running SGD with All-reduce (continued)

- After this all-reduce, the whole sum (which is essentially the minibatch gradient) will be present on all the machines
 - so each machine can now update its copy of the parameters
- Since sum is same on all machines, the parameters will update in lockstep
- Statistically equivalent to sequential SGD!

```
Algorithm 1 Distributed SGD with All-Reduce
  input: loss function examples f_1, f_2, \ldots, number of machines M, per-machine minibatch size B'
  input: learning rate schedule \alpha_t, initial parameters w_0, number of iterations T
  for m = 1 to M run in parallel on machine m
      load w_0 from algorithm inputs
      for t = 1 to T do
          select a minibatch i_{m,1,t}, i_{m,2,t}, \ldots, i_{m,B',t} of size B'
          compute g_{m,t} \leftarrow \frac{1}{B'} \sum_{i=1}^{B'} \nabla f_{i_{m,b,t}}(w_{t-1})
          all-reduce across all workers to compute G_t = \sum g_{m,t}
                                                                  m=1
          update model w_t \leftarrow w_{t-1} - \frac{\alpha_t}{M} \cdot G_t
      end for
  end parallel for
  return w_T (from any machine)
```

Same approach can be used for momentum, Adam

Benefits of distributed SGD with All-reduce

- The algorithm is easy to reason about, since it's statistically equivalent to minibatch SGD.
 - And we can use the same hyperparameters for the most part.

- The algorithm is easy to implement
 - since all the worker machines have the same role and it runs on top of standard distributed computing primitives.

Drawbacks of distributed SGD with all-reduce

- We're not overlapping computation and communication.
 - While the communication for the all-reduce is happening, the workers are idle.
- The effective minibatch size is growing with the number of machines
 - If we don't want to run with a large minibatch size for statistical reasons, this can prevent us from scaling to large numbers of machines using this method.
- Potentially requires lots of network bandwidth to communicate to all workers.

Where do we get the training examples from?

There are two general options for distributed learning.

Training data servers

- Have one or more non-worker servers dedicated to storing the training examples (e.g. a distributed in-memory filesystem)
- The worker machines load training examples from those servers.

Partitioned dataset

 Partition the training examples among the workers themselves and store them locally in memory on the workers.

The Parameter Server Model

The Basic Idea

- Recall from the early lectures in this course that a lot of our theory talked about the convergence of optimization algorithms.
 - This convergence was measured by some function over the parameters at time t (e.g. the objective function or the norm of its gradient) that is decreasing with t, which shows that the algorithm is making progress.
- For this to even make sense, though, we need to be able to talk about the value of the parameters at time t as the algorithm runs.
 - E.g. in SGD, we had $w_{t+1} = w_t lpha_t
 abla f_{i_t}(w_t)$

Parameter Server Basics Continued

- For a program runni parameters at time t memory hierarchy (k
- But in a distributed s communication mu
 - Each machine will us parameters live at ar updates less recently something more complicated

For SGD with all-reduce, we can answer this question easily, since the value of the parameters is the same on all workers (it's guaranteed to be the same by the all-reduce operation). We just appoint this identical shared value to be the value of the parameters at any given time.

educe.

 This raises the question: when reasoning about a distributed algorithm, what we should consider to be the value of the parameters a given time?

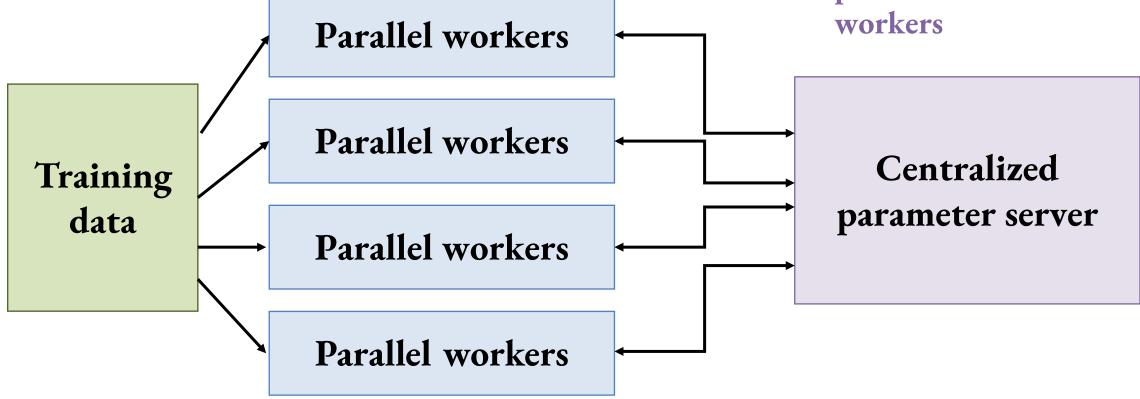
The Parameter Server Model

- The parameter server model answers this question differently by appointing a single machine, the **parameter server**, the explicit responsibility of maintaining the current value of the parameters.
 - The most up-to-date gold-standard parameters are the ones stored in memory on the parameter server.
- The parameter server updates its parameters by using gradients that are computed by the other machines, known as **workers**, and pushed to the parameter server.
- Periodically, the parameter server **broadcasts its updated parameters** to all the other worker machines, so that they can use the updated parameters to compute gradients.

Parameter server model: visually

A common model for distributed ML

- workers send gradients to parameter server
- parameter server sends parameters back to workers



Learning with the parameter server

Two options when learning with a parameter server

Synchronous distributed training

- Similar to all-reduce, but with gradients summed on a central parameter server
- Still equivalent to sequential minibatch SGD

Asynchronous distributed training

- Compute and send gradients and add them to the model as soon as possible
- Broadcast updates whenever they are available

Parameter server summary

- The parameter server holds the central copy of the weights
- Each worker **computes gradients** on minibatches the data
 - Then sends those gradients back to the parameter server
- Periodically, the worker pulls an updated copy of the weights from the parameter server.
- All this can be done asynchronously.

Multiple parameter servers

- If the parameters are too numerous for a single parameter server to handle, we can use **multiple parameter server machines**.
- We partition the parameters among the multiple parameter servers
 - Each server is only responsible for maintaining the parameters in its partition.
 - When a worker wants to send a gradient, it will partition that gradient vector and send each chunk to the corresponding parameter server; later, it will receive the corresponding chunk of the updated model from that parameter server machine.
- This lets us scale up to very large models!

Other Ways To Distribute

The methods we discussed so far distributed across the minibatch (for all-reduce SGD) and across iterations of SGD (for asynchronous parameter-server SGD).

But there are other ways to distribute that are used in practice too.

Decentralized learning

"Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent." NeurIPS 2017

- Idea: learn without any central coordination
 - No parameter server; each worker has its own copy of the model
- Workers update by doing the following:
 - Run an SGD update step using an example stored on that worker,
 - Average the worker's current model with the models of some other workers, usually its neighbors in some sparse graph
 - This limits total communication
- This is sometimes called a gossip algorithm

Local SGD

- Many parallel workers update their own copy of the model by running SGD steps using their own local data
- Periodically the workers all average by taking an allreduce
 - Like all-reduce SGD, but the all-reduce happens less frequently than at every SGD iteration
- Can generalize better than large-batch SGD
 - "Don't use large mini-batches, use local SGD." ICLR 2020

So far: Data Parallelism

- The methods we've discussed are parallelizing over examples
 - Each worker is running the same computation to compute gradients, just on different examples.

This is an instance of data parallelism

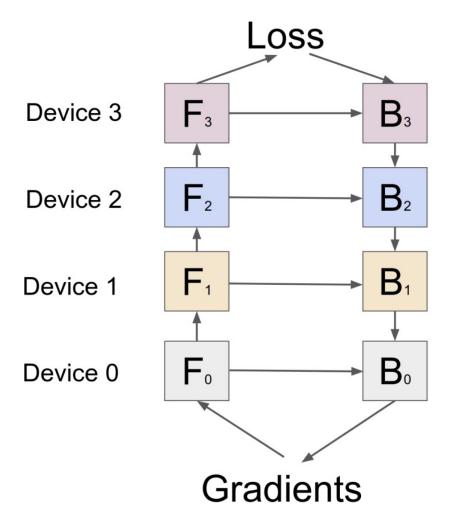
But data parallelism is not the only option...

Model Parallelism

- Main idea: **partition the layers** of a neural network among different worker machines.
- This makes each worker responsible for a subset of the parameters.
- Forward and backward signals running through the neural network during backpropagation now also run across the computer network between the different parallel machines.
 - Particularly useful if the parameters won't fit in memory on a single machine.
 - This is very important when we move to specialized machine learning accelerator hardware, where we're running on chips that typically have limited memory and communication bandwidth.

Pipeline Parallelism

- Distribute a DNN over multiple workers by assigning each layer to its own worker.
 - Each worker manages and updates the parameters for its own layer.
 - Use microbatching to avoid stalls
- Advantage: workers no longer need to store the entire model
 - Can often keep parameters in memory



From "GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism"

Federated learning

- Sometimes, your data is inherently distributed
 - For example, data gathered on people's mobile phones
 - For example, data measured by internet-of-things devices
- Rather than centralizing the data, may want to learn on the distributed devices themselves
 - E.g. to preserve the privacy of users
- This is called federated learning
 - Lots of interest from industry right now

Distributed computing for hyperparameter optimization

This is something we've already talked about.

- Many commonly used hyperparameter optimization algorithms, such as grid search and random search, are very simple to distribute.
 - They can easily be run on many parallel workers to get results faster.

Questions?

- Upcoming things
 - Final project proposal due today