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Adaptive learning rates

| So far, weOve looked at update steps that look like

Wi+1 — Wi — OétVft(Wt)

| Here, the learning rate/step sizexisd a priori for each iteration.
Il What if we usestep size that varies depending on the modz|

I This is the idea of alaptive learning rate



ExamplePolyak@sep length

I This is an simple step size schemerfatient descentthat works
when the optimal value is known.

o fw) ! fw)
KT T (wy )2

I Canalso use this with an estimated optimal value.




Intuition: PolyakQ@sep length

I Approximate the objective with a linear approximatitdre current
iterate.

fw) = flwg) + (w —wg) TV f(wy)

I Choosdhestep size that makes the approximation equal to the known
optimal value.

S :f(wkﬂ) :f(wk—avf(wk)) I flwg) — f*
f(wr) — o[V f(w)]]? IV f(we)||?




Example: Line search

| ldea: just choose the step size that minimizes the objective.

l « = arg rlnlr(l)f (Wi ! 1 (wy))

I Only works well fogradient descenf not SGD.

| Why?
| SGD moves in random directions thatOt always improve thebjective.
I Doing linesearch on full objectiv@expensive relative to SGD update.



Adaptive methods for SGD

| Several methods exist
l AdaGrad
l AdaDelta
I RMSProp
l Adam

I YouOll sedam in one of thigvednesdaygapers



AdaGrad

Adaptive gradient descent



Perparameter adaptive learning rate schemes

I Main idea: sé¢helearning rateper-parameterdynamically at each
iterationbased on observed statistics ofpts gradients.

(wer1); = (we); — e (Vf(we; xt)),

Il Where the step size now depends on the parametgr index
I Corresponds to a multiplication of the gradient by a diagonal scaling matrix.

I There are many different schemes in this class



AdaGrad One ofthefirst adaptivenethods

I AdaGrad Adaptivesubgradiennethods for online learning and
stochastioptimization
I JDuchi E Hazan Y Singer
I Journabf Machine Learning Reseai 1

I High level approach: can iisgory of samplal gradientsto choose
the step size for the next SGD step to be inversely proportional to the
usual magnitude of gradient steps in that direction

I On a perparameter basis.



AdaGrad

Canthink of this as like

Algorithm 1 AdaGrad the norm of the
input: learning rate factor n, initial parameters wqf CAEEEIERIRGET )
initialize ¢t <+ 0 parameter.
loop

sample a stochastic gradient g; < V f(wy; x¢)
update model: for all j € {1,...,d}

(wt-l-l)j — (wt)j — \/Zt

t<—t+1
end loop




Memoryefficient implementation &daGrad

Algorithm 1 AdaGrad

input: learning rate factor 7, initial parameters wy € R%, small number
initialize t < 0
initialize r + 0 € R¢
loop
sample a stochastic gradient g; < V f(wy; x¢)
accumulate second moment estimate r; < r; + (gt)§ for all j € {1,...,d}
update model: for all j € {1,...,d}

Ui :
(wig1); = (we); — NGEX R Important thing to
notice: step size Is
t+—t+1 monotonically

end loop decreasing!




Demo



AdaGrad for Non-convex Optimization

* What problems might arise when using AdaGrad for non-convex
optimization?

* Think about the step size always decreasing. Could this cause a problem?

* If you do think of a problem that might arise, how could you
change AdaGrad to fix it?



RI\/ISPrOp Just replaces the

gradient accumulation

Algorithm 1 RMSProp of AdaGradwith an
input: learning rate factor n, initial parameters wy € R?, exponential moving
initialize ¢ < 0 average.
initialize r < 0 € R¢

loop
sample a stochastic gradient g; + V f(wy; )

accumulate second moment estimate r; < p-r; + (1 — p) (gt)? for all

jedl,...,d}
update model: for all j € {1,...,d}

n
VTitE€

(wt—l-l)j — (wt)j - " 9j

t+—t+1
end loop




A systems perspective

I Whatis the computational cost ofAdaGradand RMSPropg?
l How much additional memory s required comparedto baselineSGD?
l How much additional compute is used?



Adaptive methods, summed up

I Generally useful when we can expect theredidfde=nt scales for
different parameters

| But can even work well when that doesnOt happen, as we saw in the demo.
I Very commonly used class of methods for training ML models.

I WeOll see more of this when we gtddgn on Wednesday
I Adam is basicalRMSPropt Momentum.



Algorithms other than SGD



Machine learning is not just SGD

I Once a model is trained, we need to use it to classify new examples
I Thisinference taskis not computed with SGD

I There are other algorithms for optimizing objectives besides SGD

| Stochastic coordinate descent
| Derivative-free optimization

I There are other common tasks, such as sampling from a distribution
I Gibbs samplingand other Markov chain Monte Carlo methods
I And we sometimes use this together with SGEalledcontrastive divergence



Why understand these algorithms?

I They represent a significant fraction of machine learning computations
I Inferencein particular is huge

l You may want to use thenstead of SGD

I But you gonf)t want to suddenly pay a computational penalty for doing so beca
you donOt know how to make them fast

I Intuition from SGD can be used to make these algorithms faster too
I And viceversa



Inference Algorithms



Inference

I Suppose that our training loss function looks like

1!”

fw)= 5 1®Wx),y)
1=1

I Inference is the problem of computing the prediction

W(W; Xi )



How Important Is inference?

I Train once, infer many times
I Many production machine learning systems just do inference

I Image recognition, voice recognition, translation
I All are just applications of inference once theyOre trained

I Need to getesponses to users quickly
I On the web, users wonOt wait more than a second



Inference on linear models

I Computational cost: relativielw
I Just a matrixector multiply

| But still can be more costly in some settings
I For example, if we need to compute a random kernel feature map
l ' What is the cost of this?

l Which methods can we use to speed up inference In this setting?



Inference on neural networks

I Just need to run the forward pass of the network.
I A bunch of matrix multiplies and nlbmear units.

I Unlike backpropagation for learning, here we do not need to keep the
activations around for later processing.

I This makes inference a much simpler task than learning.
| Although it can still be coshly itOs a lot of linear algebra to do.



Inference on neuraktworks (continued)

I Computational costlatively high
I Several matraxector multiplies and ndmear elements

l Which methods can we use to speed up inference In this setting?

I Compression
I Find an easido-compute network with similar accuracy bytéineng
I WeOll see this in more detail later in the course.



Metrics for Inference

I Important metricthroughput
I ' How many examplescan we classify in some amount of time

Important metrictatency
I How long does it take to get a prediction for a single example

Important metricmodel size
I How much memory do we need to store/transmit the model for prediction

Important metricenergy use
I How much energydo we use to produce each prediction

What are examples where we might care about each metric?



Improving the performance of
Inference



Alteringthe batch size

I Just like with learning, we caake predictions in batches

I Increasing the batch size hetpsrove parallelism
I Provides more work to parallelize and an additional dimension for parallelizatio
I This improveshroughput

I But increasing the batch size can make us do more work before we ca
return an answer for any individual example
| Can negatively affdatency



Demo



Compression

| Find an easierto-compute networkwith similar accuracy
I Or find a network with smaller model sizedepending on the goal

I Many techniquesfor doing this

I We’ll talk about this later in the semester when we come back to it

| Usually involve some sort of fine-tuning

I Apply a lossy compression operation, then retrain the model to improve accuracy



Efficient architectures

I Some neural network architectureslaseyned to be efficient at
Inference time
I ExamplesMobileNet ShuffleNetCirCNN

| These networks are often based on sparsely connected neurons

I This limits the number of weights which makes models smaller and easier to rt
iInference on

I To be efficient, we can jusiin one of these networks in the first
placefor our application.



Reuse of computation

| For video and timeeries data, there Is a loteflundant information
from one frame to the next.

I We can try toe-use some of the computatiofrom previous frames.

I This is less popular than some of the other approaches here, because
not really general.



The last resort for speeding up DNN Iinference

I Train another, faster type of modethat is not a deep neural network
| For some redlme applications, you canOt always use a DNN

| If you can get away withinear mode] thatOs almost always much
faster.

I Also,decision treestend to be quite fast for inference.



Where do we run inference?

The hardware that underlies the systems side of inference



Inference In the cloud

I Most inference today Is run @oud platforms

I The cloud supportarge amounts of compute
I And makes it easy to access it and make it reliable

I This Is a good place to put Al that needs to think about data

I For interactive modelstencyis critical



Inference on edge devices

| Inference can run on yoaptop or smartphone
I Here, the size of the model becomes more of an issue
I Limited smartphone memory

I This Is good fouser privacy and security
| But not as good for companies that want to keep their models privalt

I Also can be used to depfmrsonalized models



Inference on sensors

| Sometimes we wailference right at the source
| On the sensor where data iIs collected

| Example: a surveillance camera taking video

I DonOt want to stream the video to the cloud, especially if most of it
not interesting.

| Energy use IS very important here.



Other Techniques for Training,
Besides SGD



Coordinate Descent

I Start with objective
minimize:f (X1, X2,...,Xn)

I Choose a random inde»xand update

Xi =argmin f (X1,X2,...,%i,...,Xn)
Xi

I And repeat in a loop



Variants

 Coordinate descent with derivative and step size
* Sometimes called “stochastic coordinate descent”

of
(9:1:7;

* The same thing, but with a gradient estimate rather than the full gradient.

Lt41,0 — Lt q Loy (iﬁt,l, Lt 2y 7$t,n)

* How do these compare to SGD?



Derivative Free Optimization (DFO)

I Optimization methods that donOt require differentiation
| Basic coordinate descent is actually an example of this

I Another example: for normally distributed
FOa )L (! H)
- 2"

A

Xi+1 = Xy !

I Applications?



Another Task: Sampling



Focus problem for this setting:
Statistical Inference

I Major class of machine learning applications
I Goal:draw conclusions from datausing a statistical model
I Formally: find marginal distribution of unobserved variables given observations

I Example: decide whether a coin is biased from a series of flips

I Applications: LDA, recommender systems, text extraction, data cleanir
data integration etc.



Popular algorithms usta
statisticainference at scale

I Markowchain Monte Carlo methods (MCMC)

| Infer by simulating a Markov chiina random proce$$ that we can prove
will converge to the distribution we want to sample from over time

I Asymptotically exact, but approximate for any finite execution time

| Variational inference

I Infer by solving an optimizatipnoblem that models the target distribution as a
member of a tractable family of distributions.

I Canuse many of the sar®ehniques for speedue have discussedciass.
I Approximate method, since the class may not contain the real distribution.



Examples of Markov Chain Monte Carlo
Methods

I Gradientbased methods
| Stochastigradient Langevin dynamics
I Hamiltonian Monté€arlo
| Stochastic gradient Hamiltonian Monte Carlo

I Non-gradierbased methods
I Gibbs sampling
I MetropolisHastings



Graphical models

I A graphical way to describe a probability distribution

I Common in machine learning applications
| Especially for applications that deal with uncertainty

I Useful for doing statistical inference at scale
| Because we can leverage technigues for computing on large graphs



What types of inference exist here?

I Maximuma-posteriori (MAP) inference
I Find the state with the highest probability
I Often reduces to an optimization problem
Il What is the most likely state of the world?

I Marginal inference
I Compute the marginal distributions of some variables
Il What does our model of the world tell us about this object or event?



What is Gibbs Sampling?

Algorithm 1 Gibbs sampling” /~

(_ Compute its conditional

Require: Variables x; for 1! distribution aiven the ' -
A <
|‘I Output the current - other variables.

state as a sampledling uniformy-._ T{dL...,N

ﬁs\v/g\TpTex—crrn‘ formly from P, (Xsﬁ({l _____ n S})
nLtr Y

Update the variable %/

@D

— sampling from its
\conditional distributioﬂ




Learning on graphical models

I Contrastive divergence
I SGD on top of Gibbs sampling

I The de facto way of training
I Restrictedboltzmanmachines (RBM)
I Deep belief networks (DBN)
I Knowledgebase construction (KBC) applications



What do all these algorithms look like?
Stochastic Iterative Algorithms

Given an immutable input dataset and a model we want to output.

\

Repeat:
same structure

1. Pick a data point at random

same systems
2. Update the model properties

3. lterate same techniques



Questions?

I Upcoming things
| Project proposals due today
| Paper Presentation #6a and #b\Wednesday

I On adaptive learning rate methods



