Machine Learning Theory (CS 6783)

Lecture 4 : Linear Betting with Covariates Contd., Learning Frameworks, Examples

1 Linear Betting Game With Covariates

Fort =1 ton:
1. Receive instance z; € X.
2. Predict g; € R.
3. Receive label y, € {£1} and pay loss g - y;.

End For.

This is a variant of the betting game where we get covariate or side information on every round
and we want to perform as well as some benchmark ® that uses knowledge of this side information.
You can think of this as an extension of Cover’s result when we have covariates.

We say that the adaptive bound ® : X" x {£1}" — R is achievable if there exists a strategy for
the learner that ensures that

n
th'yt < q)(wlv"-am?% ylv"'ayn)- (1)
t=1

We want to answer the question of when a performance bound ® is achievable and, when it is
achievable, what the algorithm for the learner should be.

Meet the Trees

Definition 1. The sequence of functions x = (X1,...,X,) with x¢ : {£1}71 — X will be called an
X -valued tree. Here x1 € X is a constant.

We are now ready to provide the main result characterizing which ®’s are achievable.

Lemma 1. A necessary and sufficient condition for ® to be achievable in the sense of (77) is that
ir;fEe (ID(Xl, Xg(el), ey Xn(elzn—l); 6) Z 0, (2)

where the infimum is taken over all X -valued trees x, and €1, ..., €, are i.i.d. Rademacher random
variables.

Proof you will work out in Assignment 1

Remark 1.1. We will sometimes write either x; or x.(€) instead of the more precise but longer
expression xX¢(€1, ..., €—1) whenever this does not cause confusion.



Example 1.1. Let
n
q)(l‘la s Ty Yl - 7yn) = }Ielg__zyt : f('l"t) + COmpleXn(]:)
t=1
In this case, the smallest value of Complex, (F) that makes the above ® achievable is given by:

n
Complex,,(F) = supE, sup Z € - f(xe(€1:4-1)),
x feFo

which we refer to as the sequential Rademacher complexity. Note that if the tree x has the same
value for all its nodes on level t (i.e., x¢(€1,...,60—1) = x¢ for all €), then the above recovers
the worst-case statistical Rademacher complexity. The crucial difference here is that we allow
an arbitrary tree, which can make the sequential Rademacher complexity possible larger than the
statistical one in some settings.

Supervised Learning With Convex, L-Lipschitz Losses The linear betting loss —g; cot y;
seems restrictive. But it turns out that via reduction to such linear betting games one can actually
consider mode complex losses and prediction settings. Specifically, consider the following learning
problem: For ¢t =1 to n:

1. Receive instance x; € X.
2. Predict 4, € R.
3. Receive y; € Y and pay loss (¢, yt)-

End For.
In the above assume that the loss ¢ is convex and L-Lipschitz in its first argument. Say our
goal was to minimize regret w.r.t. some class of predictors F C R? given by

Reg,, = Zg@t,yt) - }ggrzf(f(:ct),yt)
t=1 t=1

Now we claim that if one has an algorithm for the linear betting game with ®(x1,...,2n, Y1,...,Yn) =
infrer >0 v f(z¢) + Complex,, (F), then, one can reduce the above game to linear betting game
and use that algorithm and obtain a bound on regret of the form:

Reg,, < LComplex,, (F)

Proof. Note that for any f € F, by convexity: €(9i,y1) — £(f(ze),yr) < OGe,ye) - (Gr — f(xe)).
Hence we can conclude that:

n

> 0y = D A @) y) <> ) - (e — f(ae))

t=1 t=1 t=1



We use the fact that by L-Lipschitzness 94(g, y;) is a number between —L and L. Next we interpret

this number as L times the expected value of by € {£1} drawn such that probability of b; is one is

given by Ol( Gt ,2yt)+1

n

= LZEwa [be - (G¢ — f(xr))]

t=1

Hence

n
Reg, < Lsup > B, owarane b (9 — (1))
feF 4 2

sup by - (G — f(xt))]

feF o

by - g — inf by -
; t Yt }Q;t f(xt)]

< LE

=LE

In other words, the way we can use the linear betting algorithm is as follows. On every iteration
predict g; as suggested by the linear betting algorithm based on what it is fed so far as outcomes.
(at round t = 1 there is no input and so we just get a recommendation and subsequently we can
proceed as stated here). Next, after playing §; y: € ) is revealed to us. We then compute 043¢, y:)
and then draw b; € {£1} as described in the proof and feed this as outcome of the game for round
t of linear betting game to the linear betting algorithm. Thus on the next round when we provide
Zty1 to the linear betting algorithm it will in turn suggest the next ¢;41 to play and so on. O

2 Setting up learning problems

1. x : instance space or input space
Examples:

e Computer Vision: Raw M x N image vectorized X = [0,255]M*N SIFT features (typi-
cally X C R%)
e Speech recognition: Mel Cepstral co-efficients X' ¢ R12xlength
e Natural Language Processing: Bag-of-words features (X ¢ Ndocument size) 'py_oyamg
2. Y: Outcome space, label space

Examples: Binary classification ) = {£1}, multiclass classification ) = {1,..., K}, regres-
sion Y C R)

3. £:Y x Y~ R: loss function (measures prediction error)
Examples: Classification £(y',y) = 1y4,), Support vector machines £(y’,y) = max{0,1 —

y -y}, regression £(y',y) = (y — y')?

4. F Cc Y¥: Model / Hypothesis class (set of functions from input space to outcome space)
Examples:

e Linear classifier: F = {x > sign(f'z): f € R}



e Lincar SVM: F = {z +— f'z: f € R% ||f|l2 < R}
e Neural Netoworks (deep learning): F = {z — o(Wouo(Wgo(...o(We(Wio(Winx)))))}

where ¢ is some non-linear transformation (Eg. ReLU)

Learner observes sample: S = (z1,91),..., (Zn, Yn)

Learning Algorithm : (forecasting strategy, estimation procedure)
o
y:Xx | J@EAx Y)Y
t=1

Given new input instance x the learning algorithm predicts y(z,S). When context is clear (ie.
sample S is understood) we will fudge notation and simply use notation y(-) = y(-,.5). y is the
predictor returned by the learning algorithm.

Example: linear SVM Learning algorithm solves the optimization problem:
n
WgyM = argmin Z max{0,1 — y;w ' x;} + A|w]|
W=t

and the predictor is y(z) = y(z, 5) = wiyy

2.1 PAC framework
Y= {:l:l}a g(ylvy) = l{yliy}

Input instances generated as x1,...,x, ~ Dx where Dx is some unknown distribution over input
space. The labels are generated as

Yt = f*(wt)

where target function f* € F. Learning algorithm only gets sample S and does not know f* or Dx.

Goal: Find y that minimizes

Penpx (¥(x) # f7(2))
2.2 Non-parametric Regression
y g Ra g(ylv y) = (y/ - y)2

Input instances generated as x1,...,z, ~ Dx where Dx is some unknown distribution over input
space. The labels are generated as

yr = f*(x) +e  where g, ~ N(0,0)

where target function f* € F. Learning algorithm only gets sample S and does not know f* or Dx.
Goal: Find y that minimizes
Evnpy [(¥(2) = F*(@)] =15 = f*ll a0
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2.3 Statistical Learning (Agnostic PAC)
Generic X, Y, ¢ and F

Samples generated as (z1,y1), ..., (Tn,Yn) ~ D where D is some unknown distribution over X’ x ).
Goal: Find y that minimizes

E(x,y)ND [g(y(x)7 y)] — inf E(z,y)ND [g(f(l'), y)]

For any mapping g : X = ) we shall use the notation Lp(g) = E(;)~p [((g(z),y)] and so our goal
can be re-written as:

Lo(¥) = inf Lo(/)

Remarks:
1. ¥ is a random quantity as it depends on the sample
2. Hence formal statements we make will be in high probability over the sample or in expectation
over draw of samples
2.4 Online Learning
Fort=1ton
(a) Input instance z; € X" is produced
(b) Learning algorithm outputs prediction g

(¢) True outcome ¥, is revealed to learner

End For

One can think of gy = y¢(z¢, ((z1,91), - -5 (Te-1,Yi-1)))-
Goal: Find learning algorithm y that minimizes regret w.r.t. hypothesis class F C Y% given

by,
Regy = Y (e ye) = inf > A (xe), we)
t=1 t=1

3 Example 1: Classification using Finite Class, Realizable Setting

In this section we consider the classification setting where Y = {£1} and 4(y,y) = 1{y’ # y}. We
further make the realizability assumption meaning y, = f*(z;) where f* is obviously not known to
the learner.



3.1 Online Framework

The online framework is just as described earlier with the realizability assumption added in. That
is, at every round the true label y; revealed to us is set as y; = f*(x;) for some fixed f* not known
to the learning algorithm. However x;’s can be presented to us arbitrarily. First note that under
the realizability assumption, we have that

1 < 1 «
min — ;E(f(l“t), ) = S (@) £y} =0

feFrn =1

Hence the aim in such a framework is to simply minimize number of mistakes > ;" | ¢(J¢, y) and
prove mistake bounds.

Now say F = {f1,..., fn}, a finite set of hypothesis. What strategy can we provide for this prob-
lem? How well does it work?

If we simply pick some hypothesis that has not made a mistake so far, such an algorithm can make
a large number of mistakes (Eg. as many as N). A simple strategy that works in this scenario is
the following. At any point ¢, we have observed x1,...,2:—1 and labels y1,...,7:—1. Now say

.Ft:{fef:V/iE[t—lL f(wz):yz}

Now given x;, we pick §; = sign(> ser | (z¢)). That is we go with the majority of predictions by
hypothesis in F;. How well does this algorithm work?

Claim 2. For any sequence x1,...,%,, the above algorithm makes at most [logy N'| number of
mistakes.

Proof. Notice that each time we make a mistake, ie. sign(}_,cz, f(21)) # y, then we know
that at least half the number of functions in F; are wrong and so each time we make a mistake,

|Fit1] < |Fi|/2 and hence, we can make at most logy N number of mistakes. O
That is the average error is y.

3.2 PAC Framework

In the PAC framework, z1, ..., z, are drawn iid from some fixed distribution Dy and our goal is to
minimize Pyp,(y(x) # f*(z)) either in expectation or high probability over sample {z1,...,z,}.

Unlike the online setting, in the PAC setting one can simply pick any hypothesis that has not made
any mistakes on training sample. That is,

(-, S) = argminger > L{f(xe) # v} -

(ze,y1)€S

How well does this algorithm work? How should we analyze this?

Let us show a bound of error with high probability over samples. To this end we will use the so
called Bernstein concentration bound.



Fact: Consider binary r.v. Z1,...,Z, drawn iid. Let u = E[Z] be their expectation. We have the
following bound on the average of these random variables. (notice that since Z’s are binary their
variance if given by u — u?)

1 — nf?
Plpu—— Zy >0 | <exp|—
( ”; ) 20+ §

Now for any f € F, let th = 1{f(x;) # f*(x;) where z; are drawn from Dy. Note that E[Z/] =
P, .p,(f(x) # f*(z)). Hence note that for any single f € F,

Py (pwwmf(x) £ P @)~ S £ ) > e) < exp (— ! )

0
t=1 2u+3

Let use write the R.H.S. above as §, and hence, rewriting, we have that with probability at least
1 — 9 over sample,

Penpy (f(z) # f*(x))log(1/6)

n

P p,(f(x) # f*(z)) — %Zl{f(xt) £ (a0} < logéil/CS) +\/

t=1

This upon further simplifying (use inequality vab < a/2 + b/2) leads to the bound

P (@) # (@) = 2 3011 (w) # ()} < 280

t=1

Using union bound, we have that for any 6 > 0, with probability at least 1 — § over sample,
simultaneously,

21og(|F1/9)

n

VIEF  Prpy(f(@) £ /@)~ = S Uf(w) # () <

t=1

Since y € F, from the above we conclude that, for any § > 0, with probability at least 1 — § over
sample,

n

Ponpy (¥(2) # %Z V() # f* (@ )}Sw

But note that by realizability assumption and the definition of ¥, we have that

n

Z {y# £ @)} => g #u}=0

t=1
and so, with probability at least 1 — ¢ over sample,

21og(|F1/9)

Penpy (y(2) # [7(2)) <



