Machine Learning Theory (CS 6783)

Lecture 17: Stochastic Multi-armed Bandit

We already saw adversarial multi-armed bandit problems in past lecture and showed an algo-
rithm whose expected regret was upper bounded by order /K log K /n where K is number of arms
and n the total number of samples we have seen. In this lecture we will consider the stochastic
setting. That is, a setting where losses are drawn iid from a fixed distribution for each arm and
we will be interested in minimizing expected regret in this setting. To this end, we will consider
the algorithm (which for rewards is called) Upper Confidence Bound (UCB) Algorithm. I like
working with losses rather than rewards. So technically we will be doing Lower Confidence Bound
algorithm. However, since UCB is a famous algorithm you guys should know by name, I will retain
the name.

1 TUpper Confidence Bound (UCB) Algorithm

In the stochastic multi-armed bandit setting we consider the problem where losses /¢1,..., ¢, are
drawn iid from some fixed distribution D over [—1,1]%. Let us define L; = E,p [([i]] as the
expected loss of the i’th arm. Let I; € [K] be the arm picked by the learning algorithm on round

t. For arm ¢ define
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where n;; = |{s € [t] : I, = i}}. That is the number of times arm i has been picked up to time ¢.
The algorithm we consider is the following.

Fori=1to K % First K rounds play each arm once
Pick I; =4

End For

Set n; g =1 for all 4

Fort=K+1ton

Pick I; = argmin (LCByy1 = Lig1 — /2E0)
i€|K] R

Receive loss ¢;[1]
Update ny, s = np, ¢ +1
Update ﬁi,t for all ¢



End For

The high level intuition is super simple. First, note that if we consider the expected regret:
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where i* = argmin E,p [¢]i]], then we have,
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where we define A; = (L; — min;¢(g] L;) the difference in the expected losses of arm j and optimal
arm. This is clear because for each time we play a sub-optimal arm, we pay in expectation the
sub-optimality gap of the arm. Hence in expectation we get the above expression. This shows that
all we need to do to complete the proof is to bound expected number of times each arm is pulled.

Lemma 1. At any time t and any arm j,
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Proof. By Hoeffding’s inequality, we have that for any Xq,..., Xg € [0,1] drawn iid,
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But note that E [Lt} = L; since its an unbiased estimate of the loss of arm 4. and at time ¢, arm
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Or in other words,
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i is pulled n;; times. Hence using Hoeffding’s we get,
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Applying a union bound over arms in [K| and over rounds ¢ € [n] we can conclude that for any J,
with probability at least 1 — 4§, and any arm i € [K],
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Pick § = 1/t? so we can say that with probability at least 1 — 1/t2, for every arm i,
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Now let ¢* be an optimal arm. Note that for any arm j, by the bound above, with probability
at least 1 — 2/t2,
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Hence if n;; > Az~ we will have that
j

LCBmt < Lj — Aj = L«

But we also have that simultaneusly, L; > LCB;«; and so we have that when for any j, when

nj4 > 41A°2gt, then with probability at least 1 — 1/¢2,
i

LCBLt > LCBZ‘*¢
420? for all sub-optimal j’s with high probability the UCB
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algorithm will pick the optimal arm instead. More specifically,
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Thus we can conclude that when n;; >

Lemma 2. For any arm j, we have that:
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ically, we would have a contradlctlon since n;; becomes larger than the condition in the indicator.
Hence we can conclude that, > ;" p  1{I; = i,n;; < 41°g } < 41°Ag(”) Hence. we get the overall

bound of '

Now say 1{I; = i,n;; < } was switched on more than number of times, then automat-
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Using the above lemma’s result with Eq 1 we conclude the following main theorem.

Theorem 3. For the LCB Algorithm we have the following bound on expected regret:
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Corollary 4. For any n > K, the expected regret achieved by UCB algorithm is bounded as
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Proof Sketch. Basically we use the proof of the previous theorem. Except we divide arms into two

groups. First group consists of arms ¢ for which A; < \/% and second group consists of arms



i for which A; > \/%. Now note that by Eq. 1,
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This proves the theorem.



