
Machine Learning Theory (CS 6783)

Lecture 12: Online Convex Optimization/Learning

1 Online Convex Optimization Setting

For the purpose of this lecture let us modify the online learning protocol a bit (this can be done
w.l.o.g.). First, Let Z = X × Y, that is the instance space pair. Let F be a convex subset of a
vector space. ` : F × Z 7→ R is the loss function. For each z ∈ Z let `(·, z) be a convex function.

For t = 1 to n

Learner picks ŷt ∈ F
Receives instance zt ∈ Z
Suffers loss `(ŷt, zt)

End

The goal again is to minimize regret :

Regn :=
1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt)

2 Examples

Online Linear SVM In the case of SVM we are interested in linear predictors with constraint
on the `2 norm of the predictor. In this case, X ⊂ Rd, Y = {±1}. Z = X × Y and `(f , (x, y)) =
max{0, 1 − y · f>x}, F = {f : ‖f‖2 ≤ R}. Feel free to change hinge loss to any convex loss line
square loss, logistic loss etc. Also feel free to replace the constraint ‖f‖2 ≤ R by some other convex
constraint. Regret is given by

Regn =
1

n

n∑
t=1

max{0, 1− yt · ŷ>t xt} − inf
f∈F

1

n

n∑
t=1

max{0, 1− yt · f>t xt}

Regularized Linear Prediction Another set of problems that automatically fits the online
convex optimization framework are regularized loss minimization problem. Here again X ⊂ Rd,
Y could be say [−1, 1]. Now consider the case when `(f , (x, y)) = φ(f>x, y) + R(f). Where
φ : R × R 7→ R is some loss convex in first argument. R : F 7→ R is a convex function. As an
example think of the regularized version of SVM or online ridge regression, or online Lasso.

1

Experts Problem In the experts problem, we assume we have a set of N experts. Let φ :
[N] × Z 7→ [−1, 1] be any arbitrary loss function of your choice that maps each expert to its loss
on given instance.. Now let us define F = ∆N as the set of distributions over N experts (which is
of course a convex set). Noe that for any f ∈ F = ∆N , its loss is given by `(f, z) = Ei∼f [φ(i, z)] =∑N

i=1 fi · φ(i, z) which is clearly linear in f . In this case clearly regret is given by

Regn =
1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt)

=
1

n

n∑
t=1

Egt∼ŷtφ(gt, zt)− inf
f∈∆N

1

n

n∑
t=1

Eg∼f [φ(g, zt)]

=
1

n

n∑
t=1

Egt∼ŷtφ(gt, zt)− inf
f∈∆N

Eg∼f

[
1

n

n∑
t=1

φ(g, zt)

]

=
1

n

n∑
t=1

Egt∼ŷtφ(gt, zt)− min
i∈[N]

1

n

n∑
t=1

φ(i, zt)

That is, we can think about regret as the expected loss of our algorithm compared to the loss of
the single best expert in hingsight

Matrix Prediction/Collaborative Filtering Imagine we have a bunch of M users and a bunch
of N products. We want to predicts ratings of users for various products in an online fashion. Eg.
on round t we are given xt ∈ [M] × [N] the position of the matrix we are required to predict.
Learner then picks the predicted rating. Finally the true rating is revealed and learner suffers loss
for predicting wrong.

Regn =
1

n

n∑
t=1

|ŷt[xt]− yt| − inf
f∈F

1

n

n∑
t=1

|f [xt]− yt|

Think of F as a convex set where each f ∈ F is an M × N matrix. Each ŷt is also an M × N
matrix.

2.1 Online Linear Optimization

Though we are concerned with general convex losses, it suffices (in many cases with no additional
cost) to only consider online linear optimization where the loss is linear rather than general convex.
The reason for this is the following. First, given any z1, . . . , zn ∈ Z let f∗ = argmin

f∈F

∑n
t=1 `(f , zt).

Now note that by convexity,

n∑
t=1

`(ŷt, zt)−
n∑
t=1

`(f∗, zt) ≤
n∑
t=1

〈∇`(ŷt, zt), ŷt − f∗〉

≤
n∑
t=1

〈∇`(ŷt, zt), ŷt〉 − inf
f∈F

n∑
t=1

〈∇`(ŷt, zt), f〉

2

Now let D be the subset of vectors defined as, D = {∇(f , z) : f ∈ F , z ∈ Z. Now since in the online
learning protocol, learner picks ŷt ∈ F and then adversary picks z ∈ Z, we can simply think of
adversary as directly picking any ∇t ∈ D directly and this only increases the bound. Thus,

1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt) ≤
1

n

n∑
t=1

〈∇t, ŷt〉 − inf
f∈F

1

n

n∑
t=1

〈∇t, f〉

What the above means is that if we have an algorithm for online linear optimization, we can use
it as an algorithm for online convex optimization assuming the instance received on round t is the
gradients of the convex function at the point ŷt.

3 Online Mirror Descent

Strongly convex function: Function R is said to be λ-strongly convex w.r.t. norm ‖·‖ if ∀f , f ′,

R

(
f + f ′

2

)
≤ R(f) +R(f ′)

2
− λ

2

∥∥f − f ′
∥∥2

This can equivalently be written as:

R(f ′) ≤ R(f) +
〈
∇R(f ′), f ′ − f

〉
− λ

2

∥∥f − f ′
∥∥2

Bregman Divergence w.r.t. function R:

∆R(f ′|f) = R(f ′)−R(f)−
〈
∇R(f), f ′ − f

〉
Clearly if a function R is λ strongly convex, then by definition, ∆R(f ′|f) ≥ λ

2 ‖f
′ − f‖2

Algorithm : Let R be any strongly convex function. We define the mirror descent update as
follows :

∇R(ŷ′t+1) = ∇R(ŷt)− η∇t , ŷt+1 = argmin
ŷ∈F

∆R(ŷ|ŷ′t+1)

Equivalently, ŷt+1 = argmin
ŷ∈F

η〈∇t, ŷ〉+ ∆R(ŷ|ŷt)

and we use ŷ1 = argmin
ŷ∈F

R(ŷ)

Bound :

Claim 1. Let R be any 1-strongly convex function. If we use the Mirror descent algorithm with

η =

√
2 supf∈F R(f)

nB2 then,

Regn ≤
√

2B2 supf∈F R(f)

n

3

Proof. Consider any f∗ ∈ F , we have that,

〈∇t, ŷt〉 − 〈∇t, f∗〉 =
〈
∇t, ŷt − ŷ′t+1 + ŷ′t+1 − f∗

〉
=
〈
∇t, ŷt − ŷ′t+1

〉
+
〈
∇t, ŷ′t+1 − f∗

〉
By the mirror descent update, ∇t = 1

η

(
∇R(ŷt)−∇R(ŷ′t+1)

)
=
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η

〈
∇R(ŷt)−∇R(ŷ′t+1), ŷ′t+1 − f∗

〉
For any vectors a, b, c, 〈∇R(a)−∇R(b), b− c〉 = ∆R(c|a)−∆R(c|b)−∆R(b|a)

=
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η

(
∆R(f∗|ŷt)−∆R(f∗|ŷ′t+1)−∆R(ŷt|ŷ′t+1)

)
〈a, b〉 ≤ ‖a‖ ‖b‖∗ ≤

η
2 ‖b‖

2
∗ + 1

2η ‖a‖
2

≤ η

2
‖∇t‖2∗ +

1

2η

∥∥ŷt − ŷ′t+1

∥∥2
+

1

η

(
∆R(f∗|ŷt)−∆R(f∗|ŷ′t+1)−∆R(ŷ′t+1|ŷt)

)
By strangle convexity of R, ∆R(ŷt|ŷ′t+1) ≥ 1

2

∥∥ŷt − ŷ′t+1

∥∥2

≤ η

2
‖∇t‖2∗ +

1

η

(
∆R(f∗|ŷt)−∆R(ŷ′t+1|ŷt)

)
Summing over we have,

n∑
t=1

〈∇t, ŷt〉 −
n∑
t=1

〈∇t, f∗〉 ≤
η

2

n∑
t=1

‖∇t‖2∗ +
1

η

n∑
t=1

(
∆R(f∗|ŷt)−∆R(f∗|ŷ′t+1)

)
Replacing by projection only decreases the Bregman divergence

≤ η

2

n∑
t=1

‖∇t‖2∗ +
1

η

n∑
t=1

(∆R(f∗|ŷt)−∆R(f∗|ŷt+1))

≤ η

2

n∑
t=1

‖∇t‖2∗ +
1

η
(∆R(f∗|ŷ1)−∆R(f∗|ŷn+1))

≤ η

2

n∑
t=1

‖∇t‖2∗ +
1

η
R(f∗)

≤ η

2
nB2 +

1

η
sup
f∈F

R(f)

=
√

2B2 sup
f∈F

R(f)n

Dividing through by n we prove the claim.

4

3.1 Examples

Gradient Descent R(ŷ) = 1
2 ‖ŷ‖

2
2. In this case mirror descent update coincides with that of

Gradient descent and we recover the bound. Strong convexity is just Pythagorus theorem

Exponential Weights Let is consider the example of finite experts setting. In this setting we
can consider R to be the negative entropy function,

R(ŷ) =

d∑
i=1

ŷ[i] log(ŷ[i])− 1

Note that

DR(ŷ|ŷ′) = KL(ŷ‖ŷ′) =
d∑
i=1

ŷ[i] log

(
ŷ[i]

ŷ′[i]

)
In this case, it is not too hard to check that R is strongly convex w.r.t. ‖·‖1. Also note that
supf∈∆N

R(f) ≤ logN (achieved at the uniform distribution).

`p and Schattenp norms Let us consider F to be unit ball under `p norm and D to be unit ball
under dual norm. Let p ∈ (1, 2], then one can use R(f) = 1

p−1 ‖f‖
2
p and this function is strongly

convex w.r.t. `p norm. For matrices with analogous Schatten p norm, use the R(f) = 1
p−1 ‖f‖

2
Sp

.

Remark 3.1. For `1 norm one can use R(f) = 1
p−1 ‖f‖

2
p with p ≈

log d
log d−1 and hence recover a bound

of form O

(√
B2 log d

n

)
where B is the bound on `∞ norm of ∇t’s.

5

