Machine Learning Theory (CS 6783)

Lecture 12 : Characterizing Learnability Via Algorithmic Stability

1 Algorithmic Stability

Before we talk about stability of a learning algorithm, we need to give a notation for a learning
algorithm. Specifically, we define an algorithm y by a mapping of form y : [J;2;(X x Y)! — A
That is a function that takes as input sample (in X x )) of arbitrary length and maps it to a
model that maps input instances in X to outcome ). In other words, a learning algorithm takes a
sample of any length and outputs a model (a model that predicts outcome in ) given an input in
X). Indeed, an algorithm like ERM takes a sample and returns as output a model that minimizes
training error on given sample. Now with this definition of an algorithm, we are ready to talk about
algorithmic stability.

Informally, an algorithm is said to be stable if deleting a sample from the training set does not
change outcome by much. To define such stability, let us first introduce some notation. Given
a sample S, let S\' denote the sample got by deleting the i’th sample point from S. That is,

SN = L1, y1)s s (i1, Yin1)s (Tin1, Yir1)s s (Tns yn) -

Definition 1. An algorithm ¥ is said to be stable w.r.t. a distribution D with rate €gaple if:
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Definition 2. An algorithm y is said to be an Approzimate ERM (AERM) w.r.t. a class of models
F with rate egrm if for any sample S of size n,
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Ls(y(9)) < g}g} Ls(f) + emrmi(n)

If an algorithm is stable, its test loss and training loss are close (or in other words it generalizes
well). If further, the algorithm is an approximate ERM (i.e it approximately minimizes training
loss), then such an algorithm has low excess risk in expectation. The following theorem shows that
a stable algorithm that is also an AERM, has a low expected excess risk.

Theorem 1. If a learning algorithm is LOO stable with rate egaple and is also an AERM with rate
€ERM, then we have the bound on expected excess risk,

Es | Lp(¥(5))] ~ min Lp(f) < exane(n + 1) + cpraa(n + 1)
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Hence we have proved that

Es | Ln(9(5'")] ~ min Ln(/) < exaie(n) + eprni(n)
However, note that the above says that if we provide the algorithm with sample of size n — 1 (ie.
the last sample deleted), then in expectation we have the excess risk bound of egapie(n) + egrMm (7).
Since n is arbitrary, we can conclude that

Es | Lp(¥(5))] ~ min Lp(f) < exane(n + 1) + cpraa(n + 1)
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Remark 1.1. Note that a simple Markov inequality can convert an expected statement to one that
holds with say probability 1/2. From this, using the style of analysis you guys did in Assignment 1,
Question 1, you can convert the statement into a high probability one.

The below theorem shows that the converse is also true. That is, if a problem is learnable with
some rate against all distributions, then there always exists a stable AERM.



Theorem 2. If a learning algorithm y has the following expected excess risk guarantee for all
distributions D

Es | Ln(¥(5)] ~ min Lp(/) < erre(n).

then there always exists a randomized learning algorithm that is both stable and an AERM

Proof. Given access to a learning algorithm y with rate €;ate, we will show that one can obtain a
stable AERM using this algorithm as a routine. To this end, consider the following algorithm §r
that does the following. Given any sample of any size n, we first draw a new sample S’ by drawing
n’ = round(y/n) samples uniformly with replacement from the sample set S. Then we run the
algorithm ¥ on S’ and so, y(S) = y(S'). Now let us consider the properties if this randomized
algorithm.

Stability : Note that this algorithm only depends on at most n’ samples of the n samples in
S and so deleting any of the remaining n — n’ samples does not even alter the outcome of this

algorithm. Hence,
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Almost ERM Now let us use the fact that the Algorlthm y has a guaranteed rate of €;ate to
show that y is an AERM. To this end, note that the algorithm y simply runs algorithm y on sample
S’ and sample S’ is an iid draw from empirical sample S. Hence, the population loss according to
the uniform distribution is the training loss Lg. However the learning guarantee of y tells us that
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This automatically shows that the randomized algorithm is an AERM with rate €pae(v/n) in ex-
pectation. [
Combining the two theorems above we can conclude the following corollary.

Corollary 3. A statistical learning problem is learnable if an only if there exists a stable, approx-
imate ERM for the problem.



