Machine Learning Theory (CS 6783)

Lecture 11 : Wrapping-up Supervised Statistical Learning

1 Recap

1. For any statistical learning problem we have,
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2. For any L-Lipchitz loss
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3. Covering : V is an {p-cover of F on x1,...,x, at scale 3 if
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Np(F, B x1, ..., xp) = min{|V] : V is an {,-cover of F on z1,...,x, at scale 8}

4. Pollard bound:
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5. Dudley Integral bound:
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2 Sudakov’s Theorem and Partial Converse

Theorem 1. There is a universal constant ¢ > 0 such that
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The above theorem (paraphrased) is due to Sudakov. We shall not go over its proof.

Theorem 2.
c
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Proof. We already showed that Rg(F) < Dg(F). Now on the other hand, we have
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However by Sudakov’s theorem we have that for any § > 0, we have
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Using this,
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Picking o = 1 we conclude that Dg(F) < 2 + 2 1og?n Rs(F)

3 Lower Bounds on Supervised Learning for ) C R

Basic idea : To show lower bound, we pick k- n points x1,...,Zx, and signs €1, ..., €g,. The signs
are not revealed to the learner. We use the uniform distribution over the kn pairs of instances as
the distribution D. That is D = Unif{(z1,€1),..., (Zkn, €xn). Learner can even know this fact, only
learner does not get to see the ¢’s before hand. Now we sample n points from this distribution and
provide this to the learner. Clearly the learner sees at most n labels and so on the the remaining
kn — n points learner has no way to predict anything meaningful. The rest is simply massaging the
math.

We shall consider the absolute loss £(y',y) = |y — 3'|. However similar analysis can be extended
to other commonly used supervised learning losses (called margin losses) like all £, losses, logistic
loss, hinge loss etc.

Lemma 3. For any class F C [~1,1]* and for any k € N,
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For any ¢/ € [-1,1], |/ — e&| =1 — ¢/ and so,
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Now define J C [2n] as, Jg = {i : (2;,¢;) € S}. Notice that for any i € J¢, ,because g is only a
function of sample S, we have Eg [E, [elgjs(xz)]] = Eg [E,, [€:] ys(x;)] = 0. Hence :
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Now if we consider minimax rates with respect to only proper learning algorithms, that is yg € F,
then
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On the other hand if we consider improper learning algorithms as well, then
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Using k = 2, in the above, we get that for proper learning algorithms, VS%'(F) > Ry, (F) —
IRn(F). If Ry(F) = O(nP) for some p > 2 then, from this we conclude that if we consider
minimax rate for proper learning,

VSRL(F) > 0.29 Ry (F)

On the other hand if we consider improper learning as well, if R,,(F) = Q(n~/?) then picking
k = 2n'/(’=1) in the lower bound above for improper learning we can conclude that,
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4 Putting It All Together

Theorem 4. For any real valued hypothesis class F, and supervised statistical learning problem
with absolute loss (also for squared loss, logistic loss,. .. ), the following are equivalent :

1. F is uniformly learnable (V3¥24(F) — 0)
2. Ry(F) =0
3. Dp(F)—0

Summary :

1. We have a crisp certificate for learnability for real valued supervised learning
problems. Rates are tight for absolute loss, hinge loss and zero-one loss.

2. Any one of Rademacher complexity, covering numbers or fat-shattering dimen-
sion can provide to within log factors the optimal rates.



