
Machine Learning Theory (CS 6783)

Lecture 11 : Wrapping-up Supervised Statistical Learning

1 Recap

1. For any statistical learning problem we have,
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3. Covering : V is an `p-cover of F on x1, . . . , xn at scale β if
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Np(F , β;x1, . . . , xn) = min{|V | : V is an `p-cover of F on x1, . . . , xn at scale β}

4. Pollard bound:
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5. Dudley Integral bound:
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2 Sudakov’s Theorem and Partial Converse

Theorem 1. There is a universal constant c > 0 such that
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The above theorem (paraphrased) is due to Sudakov. We shall not go over its proof.

Theorem 2.
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Proof. We already showed that R̂S(F) ≤ DS(F). Now on the other hand, we have
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However by Sudakov’s theorem we have that for any δ > 0, we have√
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Using this,
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3 Lower Bounds on Supervised Learning for Y ⊂ R

Basic idea : To show lower bound, we pick k · n points x1, . . . , xkn and signs ε1, . . . , εkn. The signs
are not revealed to the learner. We use the uniform distribution over the kn pairs of instances as
the distribution D. That is D = Unif{(x1, ε1), . . . , (xkn, εkn). Learner can even know this fact, only
learner does not get to see the εt’s before hand. Now we sample n points from this distribution and
provide this to the learner. Clearly the learner sees at most n labels and so on the the remaining
kn−n points learner has no way to predict anything meaningful. The rest is simply massaging the
math.

We shall consider the absolute loss `(y′, y) = |y− y′|. However similar analysis can be extended
to other commonly used supervised learning losses (called margin losses) like all `p losses, logistic
loss, hinge loss etc.

Lemma 3. For any class F ⊂ [−1, 1]X and for any k ∈ N,
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For any y′ ∈ [−1, 1], |y′ − εt| = 1− y′εt and so,
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ŷ

E
ε1,...,εkn

ES∼Unif{(x1,ε1),...,(xkn,εkn)}

[
1

kn

kn∑
t=1
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εtŷS(xt)

]}
Now define J ⊂ [2n] as, JS = {i : (xi, εi) ∈ S}. Notice that for any i ∈ JcS , ,because ŷS is only a
function of sample S, we have ES [Eεi [εiŷS(xi)]] = ES [Eεi [εi] ŷS(xi)] = 0. Hence :
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Now if we consider minimax rates with respect to only proper learning algorithms, that is ŷS ∈ F ,
then

Vstatn (F) ≥ Rkn(F)− 1

kn
sup

x1,...,xn
sup
ŷ
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On the other hand if we consider improper learning algorithms as well, then
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Using k = 2, in the above, we get that for proper learning algorithms, Vstatn (F) ≥ R2n(F) −
1
2Rn(F). If Rn(F) = Θ(n−p) for some p ≥ 2 then, from this we conclude that if we consider
minimax rate for proper learning,
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On the other hand if we consider improper learning as well, if Rn(F) = Ω(n−1/p) then picking
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4 Putting It All Together

Theorem 4. For any real valued hypothesis class F , and supervised statistical learning problem
with absolute loss (also for squared loss, logistic loss,. . . ), the following are equivalent :

1. F is uniformly learnable (Vstatn (F)→ 0)

2. Rn(F)→ 0

3. Dn(F)→ 0

Summary :

1. We have a crisp certificate for learnability for real valued supervised learning
problems. Rates are tight for absolute loss, hinge loss and zero-one loss.

2. Any one of Rademacher complexity, covering numbers or fat-shattering dimen-
sion can provide to within log factors the optimal rates.
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