Machine Learning Theory (CS 6783)

Lecture 10: Covering Numbers, Pollard and Dudley Bounds

1 Recap

1. For any statistical learning problem we have,
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2. For any L-Lipchitz loss
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2 Covering Number

Conditioned on z1,...,x,, we are interested in bounding :
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Recall the projection of F on sample :

~/_..|a:1,...,xn = {(f(x1)> ce 7f(xn)) € Rd : f € ‘F}

For real valued functions of course |-7:|:c1zn’ could very well be infinite. But now given the n data
points, we can ask how large a set do we need to discretize F|;, . ., to accuracy .
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Definition 1. V' C R" s an ¢, cover of F on x1,...,z, at scale 3 > 0 if for all f € F, there
exists vy € V' such that
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Empirical covering number

Np(F, Bsz1, ..., xn) = min{|V| : V is an €, cover of F on x1,...,z, at scale B}
Covering number

Np(f75>n): sup Np(f7ﬁ;$1""7xn)
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You can think of V' C R" as a finite discretization of F|;, .. C R" to scale § in the normalize
¢, distance as shown in Figure below. It can easily be verified that for any p,p’ € [1, 00) such that
p, Spa Np’(‘raﬁ;xla" . 7xn) S Np(Fvﬁ;xla” . 7xn)‘

3 Pollard’s bounds

Lemma 1. For any given sample x1,...,T,, we have
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Proof. Let V be any {1 cover of F on x1,...,x, at scale 8 to be set later.
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Since above statement holds for any cover V', we have
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Since above statement holds for all 5 we have,
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Example : Binary function class F
By VC/Sauer/Shelah lemma, for any o € [0,1) :
en VC(F)
Noo(F,a,n) =1I(F,n) < < )
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It can also be shown that for any o > 0,
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Example : Non-decreasing functions mapping from R to ) = [0, 1]
Discretize Y = [—1,1] to f granularity as bins [0, /], [5,20],...,[1 — 8,1]. There are 1/ bins.
Now given n points, x1,...,2, sort them in ascending order. Any non-decreasing function can

be approximated to accuracy f (in the fo, metric) by picking on these z;’s the lower limit of the
interval of the bin the function evaluation at that point belongs to. This is shown in the figure below.

What is the size of this cover?

One possible approach to bound the size of the cover could be to note that there are n points and
each can fall in one of 1/ bins. However this would be too loose and lead to covering number 1/3™
which does not yield any useful bounds. Alternatively, to describe any element of the cover, all we
need to do is to specify for each grid/bin on the y axis, the smallest index i amongst the sorted
Zgys-- -, &g, at which the function f(z,,) is larger than the upper end of the bin. One can think of
this smallest index as a break-point in the cover for the specific function. Now to bound the size
of the cover, note that there are 1/ bins and each bin can have a break-point that is one of the n
indices. Thus the total size of the cover is n'/8. This is illustrated in the figure below. Hence we

have,
Noo('/rvﬁan) < nl/ﬂ

If we use this with the Pollard’s bounds we get :
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Break point

4 Dudley Chaining

Lemma 2. For any function class F bounded by 1,
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Proof. Let V7 be an £y cover of F on z1,...,x, at scale Bj = 27J. We assume that Vj is the
minimal cover so that |V?| = No(F, Bj,21,...,%,). Note that since the function class is bounded

by 1, the singleton set
VO ={z—0}

is a cover at scale 1. Now further, for any f € F let V§ correspond to the element in V7 that is
B; close to f on the sample in the normalized /> sense. Such element is guaranteed to exist by
definition of the cover. Now note that by telescoping sum,
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Hence we have that,
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Using Cauchy Shwartz inequality on the first of the two terms above,
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where the last step we replaced the first term by Sy since V}V is the element that is Sy close to f
in the normalized ¢s sense. Now define set W7 C R” as

~ j i—1 j i—1
W/ ={w = (vi[l] = vi [1],...,v}[n] = v} [n]) : f € F}
Note that for any w € W7,
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But 3;_1 = 28;. Hence ||w|, < 3 \/n 3;. Also note that |[W7| < |V7| x |[V7/~1|] since each element
in WY is the difference between one element in V7 and one from V73—, Therefore :
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Using Masart’s finite lemma, we have
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But 3; = Q(ﬂj — /Bj_;,_l) and so
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Now for any a let N = max{j : 8; = 2/ > 2a}. Hence, for this choice of N we have that
Bn+1 < 2a and so Sy < 4a also note that Sy > BTN > «. Hence
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Since choice of « is arbitrary we conclude the theorem taking infimum. O

Non-decreasing functions example : Lets go back to the non-decreasing functions example. In
the case when F C [0, 1]® corresponds to all non-decreasing functions on the real line, we saw that
NUF, Bz, yn) < No(F, Bz, .oy n) < NoolF, B,1,...,2n) < n'/B. Using the Pollard’s

. 1/3
bound we proved in previous class, we were only able to show that Rg(F) < O (10%> . Using
the dudley integral bound we can improve this as follows :
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