1 Recap of Algorithmic Stability

1. A learning algorithm \(\hat{y} \) is said to be Uniform Replace One (URO) stable with rate \(\epsilon_{\text{stable}} \) if

\[
\frac{1}{n} \sum_{t=1}^{n} \left| \ell(\hat{y}(S), z_t') - \ell(\hat{y}(S^{(t)}), z_t') \right| \leq \epsilon_{\text{stable}}(n)
\]

where \(S^{(t)} \) is a sample identical to \(S \) except on the \(t \)'th entry where \(z_t \) is replaced by \(z_t' \).

2. If a learning algorithm \(\hat{y} \) is URO stable with rate \(\epsilon_{\text{stable}} \) then it generalizes at the same rate.

3. If a learning algorithm \(\hat{y} \) is URO stable with rate \(\epsilon_{\text{stable}} \) and is an AERM with rate \(\epsilon_{\text{AERM}} \) then:

\[
\mathbb{E}_S [L(\hat{y}(S))] - \inf_{f \in \mathcal{F}} L(f) \leq \epsilon_{\text{stable}}(n) + \epsilon_{\text{AERM}}(n)
\]

4. If there exists an algorithm \(\hat{y} \) such that for any distribution \(\mathcal{D} \), for sample drawn from this distribution:

\[
\mathbb{E}_S [L(\hat{y}(S))] - \inf_{f \in \mathcal{F}} L(f) \leq \epsilon_{\text{rate}}(n)
\]

then, there exists an algorithm \(\hat{\hat{y}} \) s.t.

(a) \(\hat{\hat{y}} \) is \(\epsilon_{\text{stable}}(n) = \frac{2}{\sqrt{n}} \) URO stable

(b) \(\hat{\hat{y}} \) is an AERM with rate \(\epsilon_{\text{AERM}}(n) = 2\epsilon_{\text{rate}}(n^{1/4}) + O\left(\frac{1}{\sqrt{n}}\right) \)

Thus existence of a stable AERM is both necessary and sufficient condition for statistical Learnability.

2 Stability of ERM for Strongly convex objectives and more

Assumption 1. Assume that for sample \(S \) drawn, it is true that for any \(f \in \mathcal{F} \)

\[
\mathbb{E}_S \left[\hat{L}_S(f) - \min_{f \in \mathcal{F}} \hat{L}_S(f) \right] \geq \frac{\lambda}{2} \mathbb{E}_S \left[\| f - \hat{f}_S \|^2 \right]
\]

where \(\hat{f}_S = \arg\min_{f \in \mathcal{F}} \hat{L}_S(f) \)
Note that if our functions were strongly convex then the above assumption would be true
deterministically. This is because, by strong convexity
\[
\hat{L}_S(\hat{f}_S) \leq \hat{L}_S(f) + \nabla \hat{L}_S(\hat{f}_S)^\top (\hat{f}_S - f) - \frac{\lambda}{2} \| \hat{f}_S - f \|^2
\]
Rearranging we get the assumption. However, the assumption we need is milder than strong
convexity. For instance, one point strong convexity empirically would also imply the assumption.

Theorem 2. Assume that our loss is \(L \)-Lipschitz and that Assumption 1 holds, then, for any \(t \),
\[
\mathbb{E}_S \left[\sup_z \left| \ell(\hat{y}(S(t)), z) - \ell(\hat{y}(S), z) \right| \right] \leq \frac{4L^2}{\lambda n}
\]
That is, the ERM algorithm is stable in expectation.

Proof.
\[
\hat{L}_S(\hat{y}(S(t))) - \hat{L}_S(\hat{y}(S)) = \frac{1}{n} \left(\ell(\hat{y}(S(t)), z_t) - \ell(\hat{y}(S), z_t) \right) + \frac{1}{n} \sum_{s \in [n] \setminus \{t\}} \left(\ell(\hat{y}(S(t)), z_s) - \ell(\hat{y}(S), z_s) \right)
\]
\[
= \frac{1}{n} \left(\ell(\hat{y}(S(t)), z_t) - \ell(\hat{y}(S), z_t) \right) + \frac{1}{n} \left(\ell(\hat{y}(S), z'_t) - \ell(\hat{y}(S(t)), z'_t) \right)
\]
\[
+ \hat{L}_{S(t)}(\hat{y}(S(t))) - \hat{L}_{S(t)}(\hat{y}(S))
\]
\[
\leq \frac{1}{n} \left(\ell(\hat{y}(S(t)), z_t) - \ell(\hat{y}(S), z_t) \right) + \frac{1}{n} \left(\ell(\hat{y}(S), z'_t) - \ell(\hat{y}(S(t)), z'_t) \right)
\]
\[
\leq \frac{2L}{n} \left\| \hat{y}(S(t)) - \hat{y}(S) \right\|
\]
On the other hand, from our premise,
\[
\mathbb{E}_S \left[\hat{L}_S(\hat{y}(S(t))) - \hat{L}_S(\hat{y}(S)) \right] \geq \frac{\lambda}{2} \left\| \hat{y}(S(t)) - \hat{y}(S) \right\|^2
\]
Hence we conclude that
\[
\mathbb{E}_S \left[\left\| \hat{y}(S(t)) - \hat{y}(S) \right\| \right] \leq \frac{4L}{\lambda n}
\]
Hence we conclude that:
\[
\mathbb{E}_S \left[\sup_z \left| \ell(\hat{y}(S(t)), z) - \ell(\hat{y}(S), z) \right| \right] \leq \frac{4L^2}{\lambda n}
\]
In fact the above proof shows that uniform stability holds for strongly convex objectives.
3 Stability of Stochastic Gradient Descent

Given a sample S, let us consider the multi-epoch SGD algorithm that uses a prefixed order over instances. That is: at iteration t,

$$\hat{y}_{t+1} = \hat{y}_t - \eta \nabla \ell(\hat{y}_t, z_{t \pmod{n} + 1})$$

In short, we will use G_t to denote the above update. That is $\hat{y}_{t+1} = G_t(\hat{y}_t)$.

Definition 1. We say that an update rule G is α-expansive if:

$$\sup_{f,g \in F} \frac{\|G(f) - G(g)\|}{\|f - g\|} \leq \alpha$$

And we say that an update rule is σ-bounded if

$$\sup_{f \in F} \|f - G(f)\| \leq \sigma$$

Lemma 3. Consider two sequences of updates G_1, \ldots, G_T and G'_1, \ldots, G'_T with $\hat{y}_{t+1} = G_t(\hat{y}_t)$ and $\hat{y}'_{t+1} = G'_t(\hat{y}'_t)$. Let $\delta_t = \|\hat{y}_t - \hat{y}'_t\|$ and assume that $\delta_1 = 0$ (that is both algorithms are initialized at same point). Then we have:

$$\delta_{t+1} \leq \begin{cases}
\alpha \delta_t & \text{if } G_t = G'_t \text{ is } \alpha\text{-expansive} \\
\delta_t + 2\sigma & \text{if } G_t, G'_t \text{ are } \sigma\text{-bounded}
\end{cases}$$

Proof. if $G'_t = G_t$ is α-expansive, then

$$\delta_{t+1} = \|G_t(\hat{y}_t) - G'_t(\hat{y}'_t)\| \leq \alpha \delta_t$$

Also note that for the second case,

$$\delta_{t+1} = \|G_t(\hat{y}_t) - G'_t(\hat{y}'_t)\| \\
\leq \|G_t(\hat{y}_t) - \hat{y}_t + \hat{y}_t - G'_t(\hat{y}'_t)\| + \|\hat{y}_t - \hat{y}'_t\| \\
\leq \delta_t + \|G_t(\hat{y}_t) - \hat{y}_t\| + \|\hat{y}_t' - G'_t(\hat{y}'_t)\| \\
\leq \delta_t + 2\sigma$$

Theorem 4. Assume that an algorithm uses update of the form $\hat{y}_{t+1} = G_t(\hat{y}_t)$ where $G_t(f) = f - \eta \nabla \ell(f, z_{t \pmod{n} + 1})$. Now if the gradient updates G_t’s are α-expansive and σ-bounded, then for any $j \in [n]$,

$$\sup_z \mathbb{E}_S \left[\ell(\hat{y}_T(S), z) - \ell(\hat{y}_T(S^{(j)}), z) \right] \leq \frac{4T}{n} \sigma$$

Proof. We start using the Lipschitz property to note that:

$$\sup_z \mathbb{E}_S \left[\ell(\hat{y}_T(S), z) - \ell(\hat{y}_T(S^{(j)}), z) \right] \leq L \mathbb{E}_S \left[\|\hat{y}_T - \hat{y}'_T\| \right]$$

3
Let G_1, \ldots, G_T be the sequence of updates using sample S in SGD and let G'_1, \ldots, G'_T be the updates with $S^{(j)}$. Note that $G_t \neq G'_t$ only when $t \mod n + 1 = j$ and otherwise the updates are identical. Hence, using the previous lemma (and crudely upper bounding),

$$
\mathbb{E} [\delta_T] \leq \eta^{T-T/n} \left(\delta_1 + \frac{2T}{n} \sigma \right) + \frac{2T}{n} \sigma
$$

Now if $\eta \leq 1$ then we conclude that

$$
\mathbb{E} [\delta_T] \leq \frac{4T}{n} \sigma
$$

Hence we get stability of

$$
\sup_z \mathbb{E}_S \left[|\ell(\hat{y}_T(S), z) - \ell(\hat{y}_T(S^{(j)}), z)| \right] \leq \frac{4T}{n} \sigma
$$

Lemma 5. For any L-Lipschitz objective, SGD update is ηL bounded and if loss function is both convex and H-smooth then update is 1-expansive as long as step size $\eta \leq 2/H$

Proof. First note that for boundedness,

$$
\|G_t(f) - f\| = \|\eta \nabla \ell(f, z)\| \leq \eta L
$$

Next note that

$$
\|G_t(f) - G_t(g)\|^2 = \|g - f\|^2 - 2\eta \langle \nabla \ell(f, z_t) - \nabla \ell(g, z_t), f - g \rangle + \eta^2 \|\nabla \ell(f, z_t) - \nabla \ell(g, z_t)\|^2
\leq \|g - f\|^2 - \left(\frac{2\eta}{H} + \eta^2 \right) \|\nabla \ell(f, z_t) - \nabla \ell(g, z_t)\|^2
\leq \|g - f\|^2
$$

where the second inequality is a consequence of smoothness + convexity.

Putting all this together, the stability of SGD for smooth convex loss is given by

$$
\sup_z \mathbb{E}_S \left[|\ell(\hat{y}_T(S), z) - \ell(\hat{y}_T(S^{(j)}), z)| \right] \leq \frac{4L \eta T}{n}
$$