1 Online Convex Optimization Setting

For the purpose of this lecture let us modify the online learning protocol a bit (this can be done
w.l.o.g.). First, Let \(Z = \mathcal{X} \times \mathcal{Y} \), that is the instance space pair. Let \(\mathcal{F} \) be a convex subset of a
vector space. \(\ell : \mathcal{F} \times Z \mapsto \mathbb{R} \) is the loss function. For each \(z \in Z \) let \(\ell(\cdot, z) \) be a convex function.

For \(t = 1 \) to \(n \)

Learner picks \(\hat{y}_t \in \mathcal{F} \)
Receives instance \(z_t \in Z \)
Suffers loss \(\ell(\hat{y}_t, z_t) \)

End

The goal again is to minimize regret :

\[
\text{Reg}_n := \frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, z_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f, z_t)
\]

2 Examples

Online Linear SVM In the case of SVM we are interested in linear predictors with constraint
on the \(\ell_2 \) norm of the predictor. In this case, \(\mathcal{X} \subset \mathbb{R}^d \), \(\mathcal{Y} = \{\pm 1\} \). \(Z = \mathcal{X} \times \mathcal{Y} \) and \(\ell(f, (x, y)) = \max\{0, 1 - y \cdot f^\top x\} \), \(\mathcal{F} = \{f : \|f\|_2 \leq R\} \). Feel free to change hinge loss to any convex loss line
square loss, logistic loss etc. Also feel free to replace the constraint \(\|f\|_2 \leq R \) by some other convex
constraint. Regret is given by

\[
\text{Reg}_n = \frac{1}{n} \sum_{t=1}^{n} \max\{0, 1 - y_t \cdot \hat{y}_t^\top x_t\} - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \max\{0, 1 - y_t \cdot f_t^\top x_t\}
\]

Regularized Linear Prediction Another set of problems that automatically fits the online
convex optimization framework are regularized loss minimization problem. Here again \(\mathcal{X} \subset \mathbb{R}^d \),
\(\mathcal{Y} \) could be say \([-1, 1]\]. Now consider the case when \(\ell(f, (x, y)) = \phi(f^\top x, y) + R(f) \). Where
\(\phi : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R} \) is some loss convex in first argument. \(R : \mathcal{F} \mapsto \mathbb{R} \) is a convex function. As an
example think of the regularized version of SVM or online ridge regression, or online Lasso.
Experts Problem In the experts problem, we assume we have a set of N experts. Let $\phi : [N] \times Z \mapsto [-1, 1]$ be any arbitrary loss function of your choice that maps each expert to its loss on given instance. Now let us define $\mathcal{F} = \Delta_N$ as the set of distributions over N experts (which is of course a convex set). Note that for any $f \in \mathcal{F} = \Delta_N$, its loss is given by $\ell(f, z) = \mathbb{E}_{i \sim f}[\phi(i, z)] = \sum_{i=1}^{N} f_i \cdot \phi(i, z)$ which is clearly linear in f. In this case clearly regret is given by

$$
\text{Reg}_n = \frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, z_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f, z_t)
$$

That is, we can think about regret as the expected loss of our algorithm compared to the loss of the single best expert in hindsight.

Matrix Prediction/Collaborative Filtering Imagine we have a bunch of M users and a bunch of N products. We want to predict ratings of users for various products in an online fashion. Eg. on round t we are given $x_t \in [M] \times [N]$ the position of the matrix we are required to predict. Learner then picks the predicted rating. Finally the true rating is revealed and learner suffers loss for predicting wrong.

$$
\text{Reg}_n = \frac{1}{n} \sum_{t=1}^{n} |\hat{y}_t[x_t] - y_t| - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} |f[x_t] - y_t|
$$

Think of \mathcal{F} as a convex set where each $f \in \mathcal{F}$ is an $M \times N$ matrix. Each \hat{y}_t is also an $M \times N$ matrix.

2.1 Online Linear Optimization

Though we are concerned with general convex losses, it suffices (in many cases with no additional cost) to only consider online linear optimization where the loss is linear rather than general convex. The reason for this is the following. First, given any $z_1, \ldots, z_n \in Z$ let $f^* = \arg\min_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f, z_t)$. Now note that by convexity,

$$
\sum_{t=1}^{n} \ell(\hat{y}_t, z_t) - \sum_{t=1}^{n} \ell(f^*, z_t) \leq \sum_{t=1}^{n} \langle \nabla \ell(\hat{y}_t, z_t), \hat{y}_t - f^* \rangle \\
\leq \sum_{t=1}^{n} \langle \nabla \ell(\hat{y}_t, z_t), \hat{y}_t \rangle - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \langle \nabla \ell(\hat{y}_t, z_t), f \rangle
$$
Now let \mathcal{D} be the subset of vectors defined as, $\mathcal{D} = \{ \nabla (f, z) : f \in \mathcal{F}, z \in \mathcal{Z} \}$. Now since in the online learning protocol, learner picks $\hat{y}_t \in \mathcal{F}$ and then adversary picks $z_t \in \mathcal{Z}$, we can simply think of adversary as directly picking any $\nabla_t \in \mathcal{D}$ directly and this only increases the bound. Thus,

$$\frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, z_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f, z_t) \leq \frac{1}{n} \sum_{t=1}^{n} \langle \nabla_t, \hat{y}_t \rangle - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \langle \nabla_t, f \rangle$$

What the above means is that if we have an algorithm for online linear optimization, we can use it as an algorithm for online convex optimization assuming the instance received on round t is the gradients of the convex function at the point \hat{y}_t.

3 Online Gradient Descent

In this example we assume $\mathcal{F} = \{ f : \| f \|_2 \leq R \}$ and \mathcal{D} is a set whose elements all have Euclidean norm bounded by B. We consider linear loss. That is at time t the loss is $\langle \nabla_t, \hat{y}_t \rangle$.

Algorithm:

$$\hat{y}_{t+1} = \Pi_{\mathcal{F}} (\hat{y}_t - \eta \nabla_t)$$

where $\Pi_{\mathcal{F}}$ is the Euclidean projection on to set \mathcal{F} and $\eta > 0$ is referred to as step-size.

$$\Pi_{\mathcal{F}}(f) = \begin{cases} f & \text{if } \| f \|_2 \leq R \\ \frac{R}{\| f \|_2} f & \text{otherwise} \end{cases}$$

Claim 1. If we use the online gradient descent algorithm with $\eta = \frac{R}{B\sqrt{n}}$ and $\hat{y}_1 = 0$, then

$$\frac{1}{n} \sum_{t=1}^{n} \langle \nabla_t, \hat{y}_t \rangle - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \langle \nabla_t, f \rangle \leq \frac{RB}{\sqrt{n}}$$

Proof. Fix any $f^* \in \mathcal{F}$. Note that,

$$\| \hat{y}_{t+1} - f^* \|_2^2 = \| \Pi_{\mathcal{F}} (\hat{y}_t - \eta \nabla_t) - f^* \|_2^2 \leq \| \hat{y}_t - \eta \nabla_t - f^* \|_2^2 = \| \hat{y}_t - f^* \|_2^2 + \eta^2 \| \nabla_t \|_2^2 - 2\eta \langle \nabla_t, \hat{y}_t - f^* \rangle$$

Thus we can conclude that

$$\langle \nabla_t, \hat{y}_t - f^* \rangle \leq \frac{1}{2\eta} (\| \hat{y}_t - f^* \|_2^2 - \| \hat{y}_{t+1} - f^* \|_2^2) + \frac{\eta}{2} \| \nabla_t \|_2^2$$

Summing we get,

$$\sum_{t=1}^{n} \langle \nabla_t, \hat{y}_t - f^* \rangle \leq \frac{1}{2\eta} \sum_{t=1}^{n} (\| \hat{y}_t - f^* \|_2^2 - \| \hat{y}_{t+1} - f^* \|_2^2) + \frac{\eta}{2} \sum_{t=1}^{n} \| \nabla_t \|_2^2$$

$$\leq \frac{1}{2\eta} (\| \hat{y}_1 - f^* \|_2^2 - \| \hat{y}_{n+1} - f^* \|_2^2) + \frac{\eta}{2} nB^2$$

Using the η from the claim and dividing throughout by n gives the result.
What is the lower bound for this problem? In fact it is not hard to see that the lower bound for this problem is also $\frac{RB}{\sqrt{n}}$ at least when dimensionality is huge. To see this assume the adversary simply plays on each round vector orthogonal to current \hat{y}_t and also orthogonal to previous $\nabla_1, \ldots, \nabla_{t-1}$.

This algorithm is worst case optimal (in terms of computational efficiency) for SVM (even for statistical learning). Why? Think about sample complexity and amount of time needed to read the data.

4 Online Mirror Descent

Online gradient descent doesn't even type check in general vector space! If \mathcal{F} and \mathcal{D} have more interesting (convex) structures, can we get better bounds? How do we design algorithms for these problems.