Online Learning: **Expert Setting**

CS6780 - Advanced Machine Learning Spring 2019

Cornell University

Reading: Shalev-Shwartz/Ben-David, 287-297 (at http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html)

Online Classification Model

- Setting
 - Classification
 - Hypothesis space H with h: X→Y
 - · Measure misclassifications (i.e. zero/one loss)
- Interaction Model
 - Initialize hypothesis $h \in H$
 - FOR t from 1 to T
 - Receive x_{t}
 - Make prediction $\widehat{y_t} = h(x_t)$
 - Receive true label yt
 - Record if prediction was correct (e.g., $\hat{y_t} = y_t$)
 - Update h

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$, $\vec{x}_i \in \Re^N$, $y_i \in \{-1, 1\}$

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S=((\vec{x_1},y_1),\dots,(\vec{x_n},y_n)$ with

$$R = \max ||\vec{x}_i||,$$

if there exists a weight vector \vec{w}_{opt} with $||\vec{w}_{opt}|| = 1$

$$y_i\left(\vec{w}_{opt}\cdot\vec{x}_i\right) \geq \delta$$

for all $1 \le i \le n$, then the Perceptron makes at most

$$\frac{R^2}{\delta^2}$$

errors.

Expert Learning Model

- - -N experts named $H = \{h_1, ..., h_N\}$
 - Each expert h_i takes an action $y = h_i(x_t)$ in each round t and incurs loss $\Delta_{t,i}$
 - Algorithm can select which expert's action to follow in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert h_{i_t} according to strategy A_{w_t} and follows
 - Experts incur losses $\Delta_{t,1}$... $\Delta_{t,N}$

 - Algorithm incurs loss Δ_{t,i_t} Algorithm updates w_t to w_{t+1} based on $\Delta_{t,1}$... $\Delta_{t,N}$

Halving Algorithm

- - -N experts named $H = \{h_1, ..., h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - Perfect expert exists in H
- Algorithm
 - $-VS_1 = H$
 - FOR t = 1 TO T
 - Predict the same y as majority of $h_i \in VS_t$
 - $VS_{t+1} = VS_t$ minus those $h_i \in VS_t$ that were wrong
- · Mistake Bound
 - · How many mistakes can the Halving algorithm make before predicting perfectly?

Regret

-N experts named $H = \{h_1, ..., h_N\}$

- Compare performance of A to best expert i* in hindsight.

Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

- Loss of algorithm A at time t is

for algorithm that picks recommendation of expert $i = A(w_t)$ at time t.

- Regret is difference between loss of algorithm and best fixed expert in

$$Regret(T) = \sum_{t=1}^{T} \Delta_{t,A(w_t)} - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Weighted Majority Algorithm (Deterministic)

-N experts named $H = \{h_1, ..., h_N\}$

- Binary actions $y = \{+1, -1\}$ given input x, zero/one loss

- There may be no expert in H that acts perfectly

Algorithm

- Initialize $w_1 = (1, 1, ..., 1)$

- FOR t = 1 TO T

• Predict the same y as majority of $h_i \in H$, each weighted by $w_{t,i}$

• FOREACH $h_i \in H$

- IF h_i incorrect THEN $w_{t+1,i} = w_{t,i} * \beta$ ELSE $w_{t+1,i} = w_{t,i}$

- How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Exponentiated Gradient Algorithm for Expert Setting (EG)

Setting

-N experts named $H = \{h_1, ..., h_N\}$

Any actions, any positive and bounded loss

- There may be no expert in H that acts perfectly

Algorithm

- Initialize $\widehat{w}_1 = (1, ..., 1)$

- FOR t from 1 to T

• Algorithm randomly picks i_t from $P(I_t=i_t)=w_{t,i}$ where $w_{t,i}=\widehat{w}_{t,i}/Z_t$ and $Z_t=\sum_i \widehat{w}_{t,i}$

• Experts incur losses $\Delta_{t,1} \dots \Delta_{t,N}$

• Algorithm incurs loss Δ_{t,i_t}

 Algorithm updates w for all experts i as $\forall i, \widehat{w}_{t+1,i} = \widehat{w}_{t,i} \exp(-\eta \Delta_{t,i})$

Expected Regret

- Compare performance to best expert in hindsight

- Overall loss of best expert i^* in hindsight is

$$\begin{split} \Delta_T^* &= \min_{i^* \in [1..N]} \sum_{t=1} \Delta_{t,i^*} \\ &- \text{ Expected loss of algorithm } A(w_t) \text{ at time } t \text{ is} \end{split}$$

 $E_{A(w_t)}[\Delta_{t,i}] = w_t \Delta_t$

for randomized algorithm that picks recommendation of expert i at time t with probability $w_{t,i}.$

Regret is difference between expected loss of algorithm and best fixed expert in hindsight

$$ExpectedRegret(T) = \sum_{t=1}^{T} w_t \Delta_t - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Regret Bound for Exponentiated **Gradient Algorithm**

Theorem

The expected regret of the exponentiated gradient algorithm in the expert setting is bounded by

Expected $Regret(T) \leq \sqrt{2 T log(|H|)}$

where $\Delta \in [0,1]$ and $\eta = \sqrt{2 \log(|H|)/T}$ and T > $2\log(|H|)$.