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Reading: Murphy 14.1, 14.2, 14.4
Schoelkopf/Smola Chapter 7.4, 7.6, 7.8

Non-Linear Problems

Problem:

some tasks have non-linear structure
* no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space
Idea: add more features
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=>» The separating hyperplane in feature space is degree
two polynomial in input space.

Example

* InputSpace: ¥ = (x1,%3) (2 attributes)

* Feature Space: ®(¥) = (xZ,x%,x1, %3, %1%, 1) (6 attributes)

Dual SVM Optimization Problem

* Primal Optimization Problem

* Dual Optimization Problem

* Theorem: If w* is the solution of the Pri

al and a* is the
solution of the Dual, then
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Kernels
* Problem:

— Very many Parameters!
— Example: Polynomials of degree p over N attributes in input
space lead to O(NP) attributes in feature space!
* Solution:
— The dual OP depends only on inner products
- Kernel Functions K (@, b) = ®(a) - ®(b)
* Example:
— For ®(%) = (xlz,xzz,\/zixl,ﬁxz.ﬁxlxz, 1) calculating

K(d,b) = [d-b +1]" computes inner product in feature
space.

=> no need to represent feature space explicitly.




SVM with Kernel

.

Training:

Classification:

New hypotheses spaces through new Kernels:
— Linear: I((ﬁ, 5) =d-b
o N d
— Polynomial: K(ﬁ, b) = [ti -b+ 1]
. —=,2
— Radial Basis Function: K(d,b) = exp (—y[ﬁ —b] )
— sigmoid: K (& b) = tanh(y[@ - b] + ¢)

Examples of Kernels

Polynomial Radial Basis Function

Kk@b)=[a-b+1]" K(@5) = exp (—y[a - 5]°)

What is a Valid Kernel?

Definition [simplified]: Let X be a nonempty set. A
function is a valid kernel in X if for all n and all
Xy, X, € X it produces a Gram matrix

G; = K(x, x;)
that is symmetric
G=GT
and positive semi-definite

va:aTGa =0

How to Construct Valid Kernels

Theorem: Let K; and K, be valid Kernels over X X X, a2 0,
0<A<1,fareal-valued function on X, ¢:X = R™ with
a kernel K5 over R™ x R™, and K a symmetric positive

semi-definite matrix. Then the following functions are
valid Kernels

K(x,z) = A Ky(x,2) + (1-A) Ky(x,2)
K(x,z) = a K4(x,2)
K(x,z) = K;(x,2) K;(x,2)
K(x,z) = f(x) f(z)
K(x,z) = K;(¢(x),(z))
K(x,z) =x" K z

Kernels for Non-Vectorial Data

* Applications with Non-Vectorial Input Data
-> classify non-vectorial objects
— Protein classification (x is string of amino acids)
— Drug activity prediction (x is molecule structure)
— Information extraction (x is sentence of words)
— Etc.
* Applications with Non-Vectorial Output Data
-> predict non-vectorial objects
— Natural Language Parsing (y is parse tree)
— Noun-Phrase Co-reference Resolution (y is clustering)
— Search engines (y is ranking)

=>» Kernels can compute inner products efficiently!

Kernels for Discrete
and Structured Data

Kernels for Sequences: Two sequences are similar, if the
have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For 0 < A <1 consider the
following features space

ca ct a-t b-a b-t cr a-r b-r
d(cat) 22 23 A2 0 0 0 0 0
d(car) 22 0 0 0 0 23 22 0
d(bat) 0 0 22 22 A3 0 0 0
¢(bar) 0 0 0 A2 0 0 A2 A3

=> K(car,cat) = A4, efficient computation via dynamic programming




Properties of SVMs with Kernels

Expressiveness

— SVMs with Kernel can represent any boolean function (for
appropriate choice of kernel)

— SVMs with Kernel can represent any sufficiently “smooth”
function to arbitrary accuracy (for appropriate choice of kernel)

Computational
— Objective function has no local optima (only one global)

— Independent of dimensionality of feature space (but quadratic
in number of examples without additional approximations)

Design decisions
— Kernel type and parameters
— Value of C

What else can be “Kernelized”?

* Multi-class SVM

— [Schoelkopf/Smola Book, Section 7.6]
* Regression SVM

— [Schoelkopf/Smola Book, Section 1.6]
* Kernel PCA

— [Schoelkopf/Smola Book, Section 13]
* Gaussian Processes

— [Schoelkopf/Smola Book, Section 16]

... and any other method that can be written in terms of
inner products.




