Kernels

CS6780 – Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8

Non-Linear Problems

Problem:

- · some tasks have non-linear structure
- no hyperplane is sufficiently accurate How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space

Idea: add more features

→ The separating hyperplane in feature space is degree two polynomial in input space.

a b c aa ab ac bb bc cc

Example

- Input Space: $\vec{x} = (x_1, x_2)$ (2 attributes)
- Feature Space: $\Phi(\vec{x}) = (x_1^2, x_2^2, x_1, x_2, x_1x_2, 1)$ (6 attributes)

Dual SVM Optimization Problem

• Primal Optimization Problem

minimize:
$$P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
 subject to:
$$\forall_{i=1}^{n} : y_i | \vec{w} \cdot \vec{x}_i + b | \ge 1 - \xi_i$$

$$\forall_{i=1}^{n} : \xi_i > 0$$

· Dual Optimization Problem

• Theorem: If w* is the solution of the Primal and α^* is the solution of the Dual, then

$$\vec{w}^* = \sum_{i=1}^n \alpha_i^* y_i \vec{x}_i$$

Kernels

- Problem:
 - Very many Parameters!
 - Example: Polynomials of degree p over N attributes in input space lead to $O(N^{\text{p}})$ attributes in feature space!
- Solution:
 - The dual OP depends only on inner products
- \rightarrow Kernel Functions $K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$
- Example:
 - For $\Phi(\vec{x})=(x_1^2,x_2^2,\sqrt{2}x_1,\sqrt{2}x_2,\sqrt{2}x_1x_2,1)$ calculating $K(\vec{a},\vec{b})=\left[\vec{a}\cdot\vec{b}+1\right]^2$ computes inner product in feature space.
- → no need to represent feature space explicitly.

SVM with Kernel

• Training: $D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)$ subject to: $\sum_{i=1}^n y_i \alpha_i = 0$

- Classification: $h(\vec{x}) = sign\left(\left[\sum_{i=1}^{n} \alpha_i y_i \Phi(\vec{x}_i)\right] \cdot \Phi(\vec{x}) + b\right)$ $= sign\left(\sum_{i=1}^{n} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b\right)$
- New hypotheses spaces through new Kernels:
 - Linear: $K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b}$
 - Polynomial: $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d$
 - Radial Basis Function: $K(\vec{a}, \vec{b}) = \exp(-\gamma [\vec{a} \vec{b}]^2)$
 - Sigmoid: $K(\vec{a}, \vec{b}) = \tanh(\gamma [\vec{a} \cdot \vec{b}] + c)$

What is a Valid Kernel?

Definition [simplified]: Let X be a nonempty set. A function is a valid kernel in X if for all n and all $x_1, ..., x_n \in X$ it produces a Gram matrix

$$G_{ii} = K(x_i, x_i)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

 $\forall \vec{\alpha} : \vec{\alpha}^T G \vec{\alpha} \geq 0$

How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over $X \times X$, $\alpha \ge 0$, $0 \le \lambda \le 1$, f a real-valued function on X, $\phi: X \to \Re^m$ with a kernel K_3 over $\Re^m \times \Re^m$, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

$$\begin{split} K(x,z) &= \lambda \ K_1(x,z) + (1-\lambda) \ K_2(x,z) \\ K(x,z) &= \alpha \ K_1(x,z) \\ K(x,z) &= K_1(x,z) \ K_2(x,z) \\ K(x,z) &= f(x) \ f(z) \\ K(x,z) &= K_3(\varphi(x), \varphi(z)) \\ K(x,z) &= x^T \ K \ z \end{split}$$

Kernels for Non-Vectorial Data

- Applications with Non-Vectorial Input Data
 → classify non-vectorial objects
 - Protein classification (x is string of amino acids)
 - Drug activity prediction (x is molecule structure)
 - Information extraction (x is sentence of words)
 - Etc.
- Applications with Non-Vectorial Output Data

 predict non-vectorial objects
 - Natural Language Parsing (y is parse tree)
 - Noun-Phrase Co-reference Resolution (y is clustering)
 - Search engines (y is ranking)
- → Kernels can compute inner products efficiently!

Kernels for Discrete and Structured Data

Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For $0 \le \lambda \le 1$ consider the following features space

	c-a	c-t	a-t	b-a	b-t	c-r	a-r	b-r
φ(cat)	λ²	λ^3	λ²	0	0	0	0	0
φ(car)	λ²	0	0	0	0	λ3	λ^2	0
φ(bat)	0	0	λ²	λ^2	λ^3	0	0	0
φ(bar)	0	0	0	λ²	0	0	λ²	λ^3

=> $K(car,cat) = \lambda^4$, efficient computation via dynamic programming

Properties of SVMs with Kernels

- Expressiveness
 - SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
 - SVMs with Kernel can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)
- Computational
 - Objective function has no local optima (only one global)
 - Independent of dimensionality of feature space (but quadratic in number of examples without additional approximations)
- Design decisions
 - Kernel type and parameters
 - Value of C

What else can be "Kernelized"?

- Multi-class SVM
 - [Schoelkopf/Smola Book, Section 7.6]
- Regression SVM
- [Schoelkopf/Smola Book, Section 1.6]
- Kernel PCA
- [Schoelkopf/Smola Book, Section 13]
- Gaussian Processes
 - [Schoelkopf/Smola Book, Section 16]

 \dots and any other method that can be written in terms of inner products.