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Abstract

We present here Mixed Mode Cascaded Classification Models, an algorithmic framework
that seeks to effectively solve a wide range of machine learning tasks in a “plug and play”
manner. It does this by sharing predictions between machine learning tasks, thus giving each
task additional high-level information that can be used to solve its specific problem. We con-
sider here a specific implementation of this framework in which we combine the machine vision
tasks of scene categorization and depth estimation. In addition, we consider the use of a Poisson
distribution for depth estimation. Experimental results are provided.

1 Introduction

Much work has been done in the past to develop effective machine learning algorithms that solve
specific machine learning tasks by combining information from related problems, such as in [3].
However, algorithms such as these are laborious to design, and are only effective at solving specific
problems within machine learning. Recently, new techniques have been developed that can com-
bine machine learning tasks automatically, without requiring the researcher to design specialized
frameworks.

In 2008, Heitz et. al. [1] introduced the concept of a Cascaded Classification Model. A Cas-
caded Classification Model (CCM) is an algorithmic framework that exploits existing classifiers
for the individual sub-tasks. It consists of multiple layers, each layer containing an instance of each
sub-task classifier. The features used for a given task are concatenated to the output of the classifiers
in a given layer and used as the input for that task’s classifier in the next layer.

The intuition behind this model is that knowledge about different sub-tasks can be useful when
trying to perform a particular sub-task. For example, if we know that we are looking at a city scene,
then it is unlikely that the image contains any cows, and this is useful when trying to perform cow
detection. A diagram of CCM can be seen in Figure 1.

Then in 2010 Li. et. al. introduced Feedback-Enabled Cascaded Classification Models (FE-
CCM). An FE-CCM is a CCM consisting of only two layers, but exploiting the added intuition that
the first layer classifiers don’t really need to be optimizing to their stated task, as their output is never
tested for accuracy. Thus, by altering the the training data labels for the first-layer classifiers, those
classifiers can focus on optimizing to aspects of the image that are most useful to the second-level
classifiers. In this way we obtain the feedback-enabled CCM.

In this paper, we present a “Mixed Mode CCM” (MM-CCM). A MM-CCM is also a two-layer
CCM, but makes use of the intuition that a classifier is likely to be able to perform its task more
accurately on a specific type of image, rather than on all types of images together. Therefore, by
creating multiple instances of learners for each task in the first level, called “contributors”, and
having them emphasize different data during training, we can create several different learners that
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Figure 1: Cascaded Classification Models

each perform well on different subsets of the data. We can use a secondary learner, called a “mixer”,
to determine how best to combine these outputs to perform well on both sets of data together.

This mixing technique can be viewed as a form of extrapolated local regression. It is local be-
cause each contributor emphasizes the data points that matter most and trains based on that weight-
ing. It is extrapolated because the weight of each data point for each contributor is determined by
the mixer; because this mixer is itself a machine learner, it can effectively extrapolate how best to
weigh a new, unseen data point.

In addition to this, we explore here the use of a modified Poisson distribution for depth predic-
tion. Also, as input to the second layer depth estimator, for each pixel, we include the first layer
output of the nearby pixels. This is an attempt to use MM-CCM to capture the correlation that is
usually captured by Markov Random Fields.

In this paper we utilize MM-CCM to combine multiple tasks in machine vision. In particular,
we perform experiments combining the two tasks of scene categorization and depth estimation.
However, MM-CCM is a general algorithm that can be applied to any domain with multiple, related
machine learning problems.

The rest of the paper is organized as follows. In Section 2 we describe the MM-CCM model in
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Figure 2: Mixed Mode CCM. Feedback lines are not drawn here.

detail and derive the relevant equations. In Section 3 we perform experimental tests of MM-CCM.
Section 4 concludes.

2 Mixed-Mode Cascaded Classification Models

We will describe the MM-CCM model here. We will derive the equations assuming two contributors
for each level-1 task, but it can be easily extended to k Suppose there are n related subtasks, and
two level-1 classifiers for each subtask i ∈ {1, ..., n}. Then let Cji denote the level-1 classifier for
task i, where j ∈ {1, 2} denotes a specific instance of the classifier for task i. Let Ψi(X) be the
original features used for task i given an image X . Let θji represent the parameters for Cji , and Zji
the output of the classifier Cji . Furthermore, letDi denote the level-2 classifier for task i, along with
parameters ωi and output Yi.

Finally, we also have a system for determining how the individual level-1 classifier for a given
task are mixed before being sent to the second layer. For each task i, let Ni denote a mixing
node with parameters βi that takes input Ψi(X) and output a mixing value Mi. There are multiple
methods for mixing different instance of a level-1 task; currently we perform mixing via linear
interpolation:

Zi = MiZ
1
i + (1−Mi)Z

2
i , Mi ∈ [0, 1].

This value is then sent to the level-2 classifiers as an input feature. A diagram of this process can be
seen in Figure 2.

Now, we wish to determine how best to optimize our parameters, and how best to feed back
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information to the level-1 classifiers. That is, we wish to optimize the log-likelihood equation

`(θ1, θ2, ω, β) = log
∏
X∈Γ

P (Y1, ..., Yn|X; θ, ω, β), (1)

where β = {β1, ..., βn}, ω = {ω1, ..., ωn}, and θj = {θj1, ..., θ
j
n} for j ∈ {1, 2}.

Now, the parameters that we can feed back to the level-1 classifiers are the Zji ’s and the Mi’s.
Therefore, we wish to maximize the log-likelihood jointly with these latent variables:

`(θ1, θ2, ω, β) =
∑
X∈Γ

log
∑

Z1,Z2,M

P (Y1, ..., Yn, Z
1, Z2,M, |X;ω, θ1, θ2, β), (2)

where Zj = {Zj1 , ..., Z
j
n} and M = {M1, ...,Mn}. This can be rewritten as

∑
X∈Γ

log
∑

Z1,Z2,M

∏
i∈{1,...,n}

P (Yi|Ψi(X), Z1, Z2,M ;ωi)P (Z1
i , Z

2
i ,Mi|Ψi(X); θ1

i , θ
2
i , βi) (3)

=
∑
X∈Γ

log
∑

Z1,Z2,M

∏
i∈{1,...,n}

P (Yi|Ψi(X), Z1, Z2,M ;ωi)P (Z1
i |Ψi(X); θ1

i )
Mi

P (Z2
i |Ψi(X); θ2

i )
(1−Mi)P (Mi|Ψi(X);βi). (4)

Note that here we exponentiate the factor P (Z1
i |Ψi(X); θ1

i ) by its mixing value Mi. This captures
the intuition that when Mi is close to 0, we care little about Z1

i but much about Z2
i .

2.1 Feed Forward

We would like to jointly maximize the likelihood of the parameters and variables θ1, θ2, β, ω, Z1, Z2,M .
However, this maximization problem is nonconvex. Therefore, as in FE-CCM, we iterate between
a feedback step and a feed forward step. The feed forward stage maximizes the likelihood of `
with respect to the parameters θ1, θ2, β, ω, while the feedback stage maximizes the likelihood with
respect to the latent variables Z1, Z2,M .

Let us consider the feed forward stage here. We assume that the variables Z1, Z2,M are fixed.
The maximization problem then becomes

max
θ1,θ2,ω,β

∑
X∈Γ

log
∏

i∈{1,...,n}

P (Yi|Ψi(X), Z1, Z2,M ;ωi)P (Z1
i |Ψi(X); θ1

i )
Mi

P (Z2
i |Ψi(X); θ2

i )
(1−Mi)P (Mi|Ψi(X);βi), (5)

which is easily separable into the subproblems

max
θ1i

∑
X∈Γ

logP (Z1
i |Ψi(X); θ1

i )
Mi (6)

max
θ2i

∑
X∈Γ

logP (Z2
i |Ψi(X); θ2

i )
(1−Mi) (7)

max
βi

∑
X∈Γ

logP (Mi|Ψi(X);βi) (8)

max
ωi

∑
X∈Γ

P (Yi|Ψi(X),M,Z1, Z2;ωi) (9)

for every i ∈ {1, ..., n}. These problems can each be solved individually.
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Figure 3: An illustration of sending neighboring pixels in the level 1 depth output as input to the
level 2 depth estimator.

2.2 Feedback

To perform the feedback, we wish to update to latent variables Z1, Z2,M . For each training exam-
ple, we wish to maximize the quantity

log
∏

i∈{1,...,n}

P (Yi|Ψi(X), Z1, Z2,M ;ωi)P (Z1
i |Ψi(X); θ1

i )
Mi

P (Z2
i |Ψi(X); θ2

i )
(1−Mi)P (Mi|Ψi(X);βi) (10)

=
∑
i

logP (Yi|Ψi(X), Z1, Z2,M ;ωi) +Mi logP (Z1
i |Ψi(X); θ1

i )

+(1−Mi) logP (Z2
i |Ψi(X); θ2

i ) + logP (Mi|Ψi(X);βi). (11)

We do this by assuming that the probability distribution of a given Zji or Mi is either a Gaussian
or a Poisson (see below). Unfortunately, under that assumption, this equation is not convex, and
so cannot be easily optimized. To make up for this, we apply a hard Expectation Maximization
approach [4]. We first assume that the variables Mi are fixed, and maximize relative to Z1

i , Z
2
i .

We then assume that the Zi’s are fixed and maximize relative to the Mi’s. When this is done, the
problem breaks down such that each iterative step can be solved by convex optimization.

2.3 Depth Prediction

To make depth predictions, we utilized not a Gaussian distribution, but a Poisson. The intuition
behind this is that we care more about predicting depth correctly on a log scale than we do on a
linear scale. For example, if the true depth of a pixel is 80 feet and we predict 79 feet, that is not
nearly as bad as if the true depth is 2 feet and we predict 1. A Poisson distribution’s variance is
equal to its mean, and so it captures this intuition.

However, a Poisson distribution is a discrete distribution over the nonnegative integers, and
depth value are continuous. So, we simply took the equation for a Poisson distribution, and took it
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Scene Accuracy (%)
Independent 79.4082
Mixed 79.2498
CCM, Poisson depth 78.2389
MM-CCM, Poisson depth 77.9385
CCM, linear depth 80.0415
MM-CMM, linear depth 80.0574

Table 1: Comparison of different mixing algorithms using scene accuracy. Independent is simple
ridge regression. Mixed is two ridge clusters mixed. CCM and MM-CCM in this case represent
zero feedback iterations.

continuouly. That is, we took the distribution as

P (y, λ) =
λye−λ

Γ(y + 1)
,

where Γ(x) is the Gamma function, an extension of the factorial function, with it argument trans-
lated down by 1, to real numbers. This distribution can also be viewed as a special case of the
Gamma distribution, though the parameters and variables in a Gamma distribution are switched.

Now, Markov Random Fields typically capture the idea that nearby pixels in an image are related
to each other. We capture this same idea by including as input to the second layer depth learner not
only the output of its own pixel prediction from the first layer, but also that of its eight neighboring
pixels (Figure 3).

3 Testing

The project built on MATLAB code originally used to test the FE-CCM models provided by Cong-
cong Li. Tests were performed using a 2-task construction in which scene classification is the first
task and depth estimation is the second. The dataset used for scene categorization was the MIT out-
door scene dataset [5], and the depth estimation dataset used was the Make3D Range Image dataset
[6].

3.1 Mixing

In our first set of experiments, we specifically tested the benefits of mixing. Thus, we trained with
two tasks (scene and depth) without feedback. The results of this can be seen in Table ??.

As can be seen from the results, the mixing technique shows a moderate improvement over the
other algorithms. Somewhat surprisingly, simple ridge regression performs second best in regards to
scene categorization. This may be because the second layer scene learner uses 1-norm regularization
rather than 2-norm, and so may have difficulty utilizing all of its features, if many of them are useful.
In addition, MM-CCM seems to show some improvement over other algorithms in depth estimation
as well.

3.2 Modeling depth with Poisson distributions

In our next set of experiments, we tested the benefits of modeling depth with a Poisson distribu-
tion. As can be seen from Table ??, using a Poisson distribution for depth is actually detrimental
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(A) RMS error (B) MFE error (C) Logarithmic error
Independent Linear 16.5273 0.85571 0.63925
Independent Poisson 18.094 0.85156 0.23236
CCM Poisson w/o Neighbors 17.049 0.78304 0.22795
CCM Poisson w/ Neighbors 17.7404 0.80453 0.22162

Table 2: Comparison of different algorithms for depth estimation. Independent linear and inde-
pendent Poisson both use a regularization constant of 1. All depth predictions are capped to the
maximum 80 and the minimum 1. No feedback in CCM. (A) Root-mean-square error (RMS) is
root-mean-square error. (B) Mean fractional error (MFE) is

∑n
i=1 |ŷi − yi|/yi. (C) Logarithmic

error is
∑n

i=1 | log10 ŷi − log10 yi|/n.

Feedback Iterations MM-CCM Accuracy (%) FE-CCM Accuracy (%)
0 78.2818 79.6931
1 77.5973 78.195
2 78.0601 78.1378
3 78.0616 76.5464
4 78.1762 75.9669
5 78.1502 77.8228

Table 3: Scene categorization results, comparing MM-CCM and FE-CCM.

when using it as a first-layer input to a scene classifier. Table ?? shows results of using a Poisson
distribution for depth estimation.

As can be seen, linear regression is still most effective at reducing RMS error. This is not
surprising, as RMS error is measured in a linear fashion rather than a logarithmic fashion. Poisson
regression is clearly superior in regards to logarithmic error. This was the intended effect, and the
intuition behind using Poisson regression in the first place. In addition, note that including nearby
pixels in the CCM feed forward does seem to have a positive effect on depth estimation.

3.3 Feedback

In our next set of experiments, we utilized mixing, Poisson distributions, and feedback all together
for scene prediction. The results can be seen against the validation set in Table 3. For this ex-
periment, we trained each of the first level classifiers initially on the original scene of depth data.
However, in future iterations, we did not use the actual depth data at all, but instead trained the
level 1 depth learner on images from the scene dataset using depth labels produced by the feedback
mechanism.

The results are compared against the FE-CCM model. As can be seen, the best accuracy actually
occurs with zero feedback iterations. The same is true with FE-CCM, and FE-CCM performs better
than MM-CCM there. We believe that this is because the mixture model performs best when the
data consists of several different clusters, each of which is best represented by a different separating
hyperplane. It seems that the scene dataset does not behave in this way, and so the mixture does not
perform its best.

Finally, we tested the effectiveness of feedback in depth estimation, making use of all modi-
fications discussed in this paper. The results can be seen against the validation set in Table 4. It
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Feedback Iterations RMS MFE Logarithmic
0 17.7404 0.80453 0.22162
1 17.2776 0.75242 0.21315
2 17.3955 0.76604 0.2167
3 17.4628 0.77097 0.21801
4 17.4809 0.77642 0.21857

Table 4: Depth estimation results.

seems that some feedback is useful, though after a single iteration, more feedback starts to worsen
the results.

4 Conclusion

We have developed here a number of interesting modifications to the CCM framework. It is inter-
esting to note that, with the exception of including neighboring pixels as input to the level-2 depth
learner, the new techniques discussed here do not have to be confined to the CCM framework. Mix-
ture modeling can likely be effectively applied to any disjoint dataset, and Poisson regression for
depth estimation can be used on its own or with other techniques. Future work can isolate these
techniques from the CCM framework and explore how they can best be used.

Although not thoroughly tested here, inclusion of nearby pixels to the level-2 depth estimator
also has potential to capture useful information. Future work could involve just using a two-level
predictor, and compare those results to those obtained by Markov Random Fields.

In conclusion, this work is interesting, and some of the results are promising, though further
testing will be useful in determining the exact value of each of the methods discussed here.
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