
Predicting the runtime of combinatorial problems

CS6780: Machine Learning Project Final Report

Eoin O’Mahony

December 16, 2010

Abstract

Solving combinatorial problems often requires expert knowledge. These
problems are prevalent in many aspects of modern life and being able to
model and solve these problems quickly is important. Many different
modalities exist to solve these problems; such as Mixed Integer Program-
ming, Constraint Programming and Satisfiability. These approaches have
greatly varying performance. Choosing a solution method requires years
of experience in the domain. The aim of this work is to automate part
of this process by developing machine learning methods that will predict
the run time of different solvers.

1 Introduction

The goal of this work is to aid users in solving combinatorial problems quickly.
Combinatorial problems occur in many areas of computer science, operations
research and mathematics. Many different approaches exist for solving these
problems, the three that this work focuses on; Constraint Programming, Sat-
isfiability and Mixed Integer Programming on are described in detail below.
These methods have complimentary performance on many problems and much
research has been carried out investigating their performance on different prob-
lem classes.

For novice users, solving combinatorial problems can be a challenge. In sys-
tems such as Numberjack, Hebrard et al. [1] users can choose between different
paradigms. It often difficult for non expert users to gauge which is the best
approach for a given problem. This work is concerned with developing a system
for Numberjack that can help automate this task by predicting the runtime of
these solvers on a given problem.

The remainder of this section will outline the three different methods used
to solve these problems. Section [2] outlines related work in the area of machine
learning applied to predicting the runtime of combinatorial problems. Section
[3] deals with the gathering of the dataset for this work while Section [4] details
the features used for these problem. Finally Sections [5, 6] deal with the machine
learning methods used and the results that they yielded.

1



1.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is defined by a finite set of variables,
each associated with a domain of possible values that the variable can be as-
signed, and a set of constraints that define the set of allowed assignments of
values to the variables. The arity of a constraint is the number of variables
it constrains. Given a CSP the computational task is normally to find an as-
signment to the variables that satisfies the constraints, which we refer to as
a solution. To find a solution to a CSP we can either use systematic search,
usually based on backtracking, or incomplete search, usually based on a local
search procedure.

1.2 Mixed Integer Programming

Mixed Integer Programming is another paradigm of optimisation. It is con-
cerned with finding a solution to a system of linear equations such that an
objective function is maximal or minimal. Unlike simple linear programming
where variables have continuous domains in Mixed Integer Programming (MIP)
variables can be constrained to have integer values. The field of linear pro-
gramming started in 1947 with G. B. Dantzig developing the simplex method
for solving linear programming formulations of air force planning problems. It
has grown from this to become an integral part of modern operations research.
Although linear programming is tractable Mixed Integer Programming is in-
tractable. Methods for solving MIPs include branch and bound search using
the linear relaxation as a lower bound, problem decomposition and advanced
methods such as cuts.

1.3 SAT

Satisfiability (SAT) is the process of determining if a set of variables can be given
boolean true or false values such that a given expression using these variables
evaluates to true. In 1971 Stephen Cook showed that SAT problems are NP-
complete. SAT problems are usually specified as a conjunction of disjunctive
clauses. a clause if the clause evaluates to true under the assignment. SAT
solvers use method such as local or exhaustive search with advanced features
such as clause learning to solve problems quickly.

2 Previous work

Previous work in this area has centered around the creation of algorithm port-
folios and automatic tuning of solvers. Algorithm portfolios aim to exploit the
strengths of different algorithms by choosing between them on an instance to
instance basis.

The SAT portfolio solver SATZilla Xu et. al. [8] has enjoyed enormous
success, winning five medals in both the 2007 and 2009 SAT Competition. They

2



use a ridge regression approach to predict the runtime of different SAT solvers
on a given instance.

O’Mahony et al. [5] developed a similar approach for Constraint Problems;
developing cpHydra. Given a problem instance CpHydra computes a schedule
of solvers to maximise the chance of solving the problem within a given time
limit. Like SATZilla, cpHydra has enjoyed success in competitions, winning the
2008 Constraint Solver Competition.

Hutter et al. [2] have developed a system to automatically tune Mixed In-
teger Programming solvers. Their method involves selecting the best set of
parameters controlling the MIP solver on an instances to instance to basis de-
pending on problem features parsed from the problem.

The main contribution of this work is the novel idea of mining features from
different representations of the problem. While only SATZilla is concerned with
predicting actual runtime this work aims to greatly expand on this by predicting
the runtime of different solving paradigms.

3 Dataset

Previous work relating to constraint satisfaction problems [5] used data from
the International Constraint Solver competition. This competition runs on a
set of instances that are described in the XML based XCSP language [6]. Given
the diverse problem instances written in this format publicly available as bench-
marks this format was chosen as the format for the problem instances used. A
wide range of benchmark instances were gathered for the construction of the
dataset.

Creating the dataset proved to be a challenge. Problems were encountered
with the XCSP language and the difficulty involved in parsing it. This was
mainly due to many constraints having representations in an arbitrary format
as opposed to pure XML. Initially a parser was constructed from scratch but
this emerged to be too time consuming. Alternatively a version of the solver
Mistral was modified to allow extraction of the parsed XCSP model.

Another difficulty in building the dataset emerged from encoding problems
into SAT and MIP models. Despite all three paradigms being reducible to each
other, as they are all NP-Complete, efficient decompositions for some constraints
are difficult to find. This is particularly true for constraints that are highly non
linear when decomposing to MIP. XCSP problem instances are broken up into
two classes of constraints; extensional and intensional. Intensional constraints
are constraints that constraint variables by specifying a relation between, for
example x1 < x2 is an intensional constraint. Extensional constraints express
the set of allowed or disallowed values that sets of variables can take. In this
work only problems specified in intension are used in the dataset.

To gather features for each problem it is necessary to first load the problem
into a Numberjack model, this model is subsequently decomposed into its SAT
and MIP representations. Features are then parsed from the three representa-
tions.

3



To gather the runtime data all three solvers Mistral, MiniSat and SCIP
were run on each problem. The solvers were run with a time limit of fifteen
minutes. This was to ensure that a decent sized dataset could be gathered. The
solvers were run on a cluster with each process running on a Quad Core 2.6Ghz
XEON with 16Gb of RAM available. It was crucial to have the processes run
on independent hardware to gather reliable runtime data. The final dataset
gathered has runtime on all solvers and features for 1042 problem instances
ranging over a wide variety of problem classes.

While developing this Parser the author obtained data from previous work
[5], described in Section [2]. The results for different machine learning ap-
proaches and features selection algorithms on this data are described in detail
in [Section 5].

4 Problem Features

Initially it was assumed that features similar to those in previous work would
be effective indicators of the runtime of problems. Unfortunately this turned
out to not be the case as will be explained in [Section 5]. To remedy this the
author started with a stripped down set of simple features.

These features come from three separate sets. The first set of features are
gathered by a static analysis of the constraint satisfaction problem representa-
tion of an instance. This yields features such as

• # Constraints :- the number of constraints found in the problem

• # Variables :- the number of variables in the problem

• # Expressions :- the number of expressions in the problem, this differs
from the number of constraints as a large number of constraints can be
enclosed in a single expression

• Average constraint arity :- the average number of variables involved
in each constraint

• Average domain size :- the average number of values in variable domains

The second set of features comes from decomposing the problem into its
SAT representation. Thins involves decomposing all variables into a series of
true false literals and doing the same for the constraints used in the problem.
The decomposition methods of Tamura et. al [7] were used. Although the
decomposition methods used are state of the art on some problems the memory
usage was much higher than the original problem. Some constraints require
quadratic growth in the domains of the variables they constrain. These instances
were handled by setting a memory limit which if exceeded resulted would result
in a sparse feature vector. Some of the features gathered from the sat instances
are shown below:

• # Clauses :- the number of SAT clauses in the decomposed problem

4



• # Literals :- the number of SAT literals in the problem

• Average size of clause :- the average number of literals found in a clause

• # Clauses / # Literals :- the ration of clauses to literals in the problem

The final set of features comes from encoding the CSP as a Mixed Integer
Programming problem. The decomposition methods used are a compilation
of well known methods in the literature and a number of novel decomposition
methods. As with the SAT decomposition some problems are simply too large to
decompose to linear constraints. This is a result of highly discretised constraints
requiring decomposition of variables to weighted sums of binary variables and
then having a super quadratic number of linear constraints over these variables.
Again these problem instances were identified and also contributed a sparse
feature vector. The goal of the MIP features is to identify those problems
whose MIP formulation is ideal for a MIP solver. These features relate to things
such as density of the LP matrix and information about density of individual
constraints. Some examples of these features are listed below:

• # Linear Constriants :- the number of linear constraints needed to
represent the problem

• Average Constraint Size :- the average size of a constraint, if this is high
it indicates that the LP matrix is highly dense and may be problematic.

The goal of building this feature set was to have a small number of highly
salient features, due to the problems involved in gathering a large dataset it was
essential that the features lacked noise.

5 Machine learning Methods

Initially the author obtained the dataset from previous work. This dataset
contained features and run time data for over four thousand problems run on
Constraint solvers. The goal of obtaining this data and experimenting with
different learning models on it was to gain information about which features
from this previous work were strongest. This dataset contained run time data
for three constraint solvers; Mistral, Abscon and Choco. Given that Mistral
is one of the solvers used in this work the dataset was a useful place to start
looking for information to guide this work.

5.1 Initial results on previous dataset

The first approach taken was to learn a ridge regression model on the data. To
do this the data was split up into ten randomised subsets and ten fold cross
validation was used. The parameter λ was trained across the ten folds. There
was a hold out test test of 300 instances that the different models were evaluated
on. The ridge regression model yielded an RMS of 433.16 with a λ = 0.1. This

5



Figure 1: Linear regression model on previous dataset.

small value of lambda indicated that other linear models may be useful. A
general linear model with a normal distribution was then fitted, this yielded an
RMS of 430.95 on the hold out test set, the performance of this model on the
hold out test set can be seen in Figure [1]. This RMS was considered to be
very poor. An attempt to remedy this was done by running a wrapper features
subset selection [[4]] algorithm on the data. This algorithm is based in using
simulated annealing to explore the features subspace. The difference between
this algorithm and true simulated annealing is that the wrapper feature subset
algorithm terminates early to prevent overfitting. Using this feature selection
algorithm a subset of features was selected that yielded an RMS of 371.86.
The poor performance of different methods even with intensive feature selection
indicated that the dataset was poor. The decision was taken to start from
scratch with a new dataset of highly salient features that would be both fast
to compute and also give an accurate representation of the difficulty of the
problem, as described in Section [4].

5.2 Methods applied to new dataset

Once the new dataset was completed a number of different machine learning
methods were applied. Different linear models were fitted with varying results
across the different solvers. Many extra features were added by applying non
linear functions to the existing features, features selection was computed across
these new features. The results of these approaches are detailed in Section [6].

6



Results predicting runtime
Solver AverageRMS GeomRMS STD error Baseline
Mistral 161.190987 157.421550 34.179266 164.418495
MiniSat 439.357377 439.318268 6.189424 677.910857
SCIP 382.838617 382.339207 20.597999 445.746684

Table 1: Results for linear regression model predicting absolute runtime.

Results predicting on a log scale
Solver AverageRMS GeomRMS STD error Baseline
Mistral 1.477267 1.455386 0.248202 1.618452
Minisat 2.955717 2.953969 0.106995 5.253852
SCIP 2.845814 2.843903 0.109730 3.688003

Table 2: Results for linear regression predicting runtime on a log scale.

6 Results

The initial results of running a simple Linear regression on the features gathered
to try and predict runtime are shown in Table [6]. These results were obtained
by running a ten fold cross validation and averaging the errors in prediction.
Three stats are obtained; the arithmetic mean RMS, the geometric mean RMS
and the deviation of RMS values. Given the novelty of this work comparing
to a baseline presented a challenge. To ensure that the learning methods were
working a simple baseline was computed. To obtain this the average of the
runtime for the instances in each test set is computed and this value is used for
the prediction.

Since runtime is normally measured on a log scale the data was transformed
to this scale and the same linear regression test performed. These results are
detailed in Table [6]. Again the learning outperforms the baseline across all
three solvers.

From this table it is clear to see that the results obtained for runtime on
Mistral are far better than the results obtained for the other solvers, despite the
other solvers doing comparatively better when compared to the baseline. To
attempt to remedy this a number of extra features were added by taking the
existing features and applying non linear functions such as x2,

√
x and cos(x)

and subsequently normalising all features to the range {0, 1}. No benefit was
found to adding in these extra features. To ensure that they were not in fact
of benefit to the learning a feature subset selection algorithm was run on the
expanded feature set. An algorithm that runs greedily choosing the best feature
subset was then applied to the expanded feature set. To ensure that the feature
subsets were not over-fitting each subset was tested on a ten fold cross validation
and a randomly chosen hold out test set was used as the final judgement. This

7



Solver Average RMS
Mistral (New Dataset) 161.19
Mistral (Old Dataset) 229.1

Table 3: RMS reported for linear regression on new and old datasets

feature subset selection was run over a number of number of different random
seeds to ensure a fair result when selecting the hold out test set. Again this
showed that the additional non linear features add little to the learning.

The final Table [6] shows the results comparing the dataset of [5] ,with the
time scaled down to a similar time limit as this work, to the dataset produced
by this work. It is clear from this table that the new features produced by this
work allow a better prediction of run time than those from previous work.

7 Conclusion

In conclusion this work set out to accurately predict the runtime of solvers on
combinatorial problems. The results for predicting the run time of the solver
Mistral are promising. The results for predicting the run time of the solvers
Mistral and SCIP are still poor in comparison to Mistral and are opportunities
for future work.

This work has produced a new dataset of problem features and run time data
as well as exploring a novel method of mining feature data from an instance.
The results for predicting run time on the solver Mistral have exceeded the run
time prediction of an identical model trained on an existing feature set.

References

[1] Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan. Constraint pro-
gramming and combinatorial optimisation in numberjack. In Lodi et al. [3],
pages 181–185.

[2] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated con-
figuration of mixed integer programming solvers. In Lodi et al. [3], pages
186–202.

[3] Andrea Lodi, Michela Milano, and Paolo Toth, editors. Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, 7th International Conference, CPAIOR 2010, Bologna,
Italy, June 14-18, 2010. Proceedings, volume 6140 of Lecture Notes in Com-
puter Science. Springer, 2010.

[4] John Loughrey and Pdraig Cunningham. Overfitting in wrapper-based fea-
ture subset selection: The harder you try the worse it gets. In Max Bramer,

8



Frans Coenen, and Tony Allen, editors, Research and Development in Intel-
ligent Systems XXI, pages 33–43. Springer London, 2005.

[5] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using
case-based reasoning in an algorithm for constraint solving. In AICS, 2008.

[6] Olivier Roussel and Christophe Lecoutre. Xml representation of constraint
networks: Format xcsp 2.1. CoRR, abs/0902.2362, 2009.

[7] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling Finite Linear
CSP into SAT. pages 590–603, 2006.

[8] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-brown.
Satzilla2009: An automatic algorithm portfolio for sat. solver description.
In 2009 SAT Competition, 2009.

9


