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Abstract

Building a robust object detector for robots is alway essential for many robot operations.
The traditional problem of object detection and recognition has been tackled by computer vision
researchers for years [4, 5, 6, 7, 8, 13, 15]. There are many different approaches ranging from
location, geometric context, cultural context [6, 8] to functionalities and categories of the objects.
Most of these methods were developed based on very sophisticated computer vision algorithm
and machine learning techniques with a single source of visualization - camera images. The
other source of visualization such as 3D sensor has not been well taken into account. The recent
technique of Cascaded Classification Models is applied for less sophisticated machine learning
models and some of them gives good results [20]. This projects employs Cascaded Classification
Models (CCM) to build a robust object detector given two main sources of visualization usually
available on a robot: camera images and 3D point cloud data from a depth sensor.

1 Introduction

Object detection and recognititon problem is usually classified as the problem of computer vision
rather than robotics. The traditional approach is to build a template of the object that needs to be
detected and use the sliding window technique with or without scaling to search for the object in
the given images. In recent years, the field of robotics has proven the possibility of having certain
autonomous systems - robots - to perform specific operations. In order to perform operations on
objects, the robot first must locate and recongnize objects in unconstraint environments. Object
detection becomes increasingly important for robotics. Object detector for robots emphasizes on
robustness. Computer vision researchers developed many robust object detectors by taking into
account the context, especially geometric context of the object appearance. Although a substaintial
number of computer vision algorithms can estimate 3 dimensional world with a single image [9,
11, 12], not many of these algorithms demonstrate to work well with both indoor and outdoor
environments. On the other hand, most robots are equiped with cameras and 3D depth sensors.
3D depth sensors information can provide geometric context of the object appearance without
the need to implement very sophisticated algorithms and can work well with both indoor and
outdoor environments. Unfortunately, 3D sensor data is mostly ignored by many object detection
algorithms. Obtaining both 3D data and camera images to build Cascaded Classification Models
(CCM) object detector promises better results.



2 Related Works

Context based object detection is not a new concept in computer vision. An empirical study of
context in object detection by Divvala et al. [6] has proven that context understanding is a critical
part of object detection problem. The authors give many sources of context for object detection
such as 3D geometric context, weather context, geographic context, and cultural context. Among
these type of contexts, 3D geometric context attracts most of researchers because it is easier for
computer to recognize with a single image than the other types of contextual information. 3D
geometric context estimator segments images into geometrically consistent regions where the world
could be simplified as the set of planar surfaces, for instance, the ground is consider as support
(horizontal) surfaces and buildings are vertical surfaces, etc... Hoeim et al. great work in estimating
surface layout [11, 12] bases on the theory of James Gibson (Perception of the Visual World, Gibson,
1950) that “The elementary impressions of visual world are those of surface and edge.” The authors
make an important claim that is applied for this project: an object tends to correspond to a certain
type of surface such as the road corresponds to a supporting surface and a pedestrian corresponds to
a vertical, non-planar solid surface. Their work demonstrates the application of 3D surfaces layout
in object detector performs much better than purely local detector. Malisiewicz and Efros article
on improving spatial support of objects [9] once again reinforces the relations between objects and
the 3D surfaces from the environments containing them. Many works from Gould et al [5, 14]
segment images into geometric and semantically consistent regions to build a region-based object
detector.

From the viewpoint of robotics, object detection involves multiple sources of visualization rather
than a single camera since most robots are equipped with one or more cameras and at least one
depth sensor. Given those available resources, Gould et al. [7] propose taking into account range
data (or 3D data from sensor) to build the object detector on a robotic platform. The method
combines 2D image and 3D sensor modalities to enhance the object detection in cluttered real-
world environment. Their work relies on a camera, and both low and high dimensional 3D laser
sensors which can provide them very accurate 3D information. The object detector’s feature vector
comprises the image features and 3D features of the object which gives it the distinct advantage of
3D information. Another object detection work in robotic platform by Coates and Ng [13] shows
that their probabilitic method for combining multiple camera views can significantly improve the
accularcy of the object detector.

3 Approaches

When looking for objects, people tend to look for objects in specific places. Some objects are more
likely to appear on certain types of surfaces than the others. For example, monitors, keyboards, and
mouse are more likely to appear on the tables whereas clocks are more likely to be on the walls and
shoes are more likely to be on the ground. Tables and ground are both horizontal surfaces and walls
are vertical surfaces. This project takes the approach of geometric context based object detector,
especially the correspondence of objects and surfaces, on robotic platform that segments the images
into geometrically consistent regions. We use 3D stereo sensor data to segment environment into
regions where each region belongs to a planar surface, then align them with images obtained from
camera. The relative locations of objects and horizontal or vertical surfaces are expected to be
consistent across many different images.



4 Hardware Specifications
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Data obtained for this project uses Miscrosoft Kinect sensor. The device produces aprroximately
240,000 points in one single scan which is extracted from depth depth sensor. Kinect has 57 degree
horizontal field of view and 43 degree vertical field of view. Kinect depth sensor ranges from 1.2
meters to 3.5 meters. Kinect camera produces about 30 frames of 640 by 480 per second.

Kinect was released by Microsoft in early November 2010 and is demonstrated to effectively and
accurately track human motion. Kinect is chosen to be the main sensor and camera because it
produces much denser depth infomation than the available sensors in the lab do. It is easier for
one to obtain a Kinect than look for any kind of stereo sensors and cheaper than laser sensors.
Another advantage of Kinect is that it has both camera and depth sensor in a very close distance,
approximately 4 cm, which make calibration between these two devices easier than separate camera
and depth sensor.

5 Cascaded Classification Models (CCM) Object Detector

Although surface detector segments 3D point cloud into planar surfaces, it will not be able to
segment regions that have similar planar surface type but different textures. For example, wall
and black board both appear as vertical surface but they have different colors as well as textures.
Edge detector draws the distinction between regions that are geometrically similar but texturally
different. Superpixel segmentation gives different colors to these surfaces. So, three classification
models: surface detector, edge detector, and superpixel segmentation are used as first layer of the
CCM model. The combination of these 3 models is fed into an object detector.

Surface
Detector

Edge
Detector

Superpixel
Segmentation

Object
Detector

5.1 Surface Detector on Point Cloud Data

Hybrid 3D surface detector segments 3D point cloud into clusters where each cluster seems to
belong to the same planar surface. First, given a set of unorganized 3d points, the program puts



the points into 3D grid cells. Then, the program applies Orthogonal Distance Regression Plane
with Single Value Decomposition method to points in a cell to find the best 3D plane equation
ax + by + cz +d = 0 where (a, b, ¢) is the normalized normal vector and d is the offset for the plane
of that cell.

Orthogonal Distance Regression Plane Method
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2. Set partial derivative W
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4. Define vT" = [a b ¢] and M be nx3 matrix where M;; = x; — o, M2 = y; — yo, and
Mis = z; — zo for ¢ € {1,2,..,n}. We can rewrite J(a, b, c) as:
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5. Let A= MTM, so, J(v) is minimized by the eigenvector of A that corresponds to its
smallest eigenvalues

6. Apply Single Value Decomposition computation on A and set (a, b, ¢) to the eigenvec-
tor that corresponds to the smallest eigenvalue of A, then normalize (a, b, c).

We choose the plane equation ax + by + cz + d = 0 because vertical planes with zero coefficent for
z can still be represented using this equation. After 3D plane equations are computed, merging
step gets executed. Two adjacent cells are merged into one plane if the angle between their normal
vectors and the difference between their offsets are sufficiently small. Cells are continuously merged
together until there does not exist any two adjacent cells that have similar plane equations. After
the merging step is done, cells are grouped into segments. 3D plane equation of each segment
is recomputed. Finally, these 3D plane equations are compared with equation of horizontal and
vertical surfaces. If a normal vector makes an angle of approximately 0 degree with the normal
vector (0,0,1), the corresponding segment is considered as a horizontal surface. Similarly, if a
normal vector makes an angle of approximately 90 degree with the normal vector (0,0,1) then
the corresponding segment is a vertical surface. Otherwise, the segment is neither vertical nor
horizontal.

5.2 Edge Detector on camera image

We use MATLAB implementation of Canny method for edge detector [21] on Kinect camera images.
Not much time is devoted to select the which method and threshold should be most appropriate,
but Canny method with threshold = 0.095 and sigma = 0.105 seems to work fine.

5.3 Superpixel Segmentation on camera image

Superpixel Segmentation [1] helps eliminate edges from Edge Detector that are generated from
the set of pixels that seems to belong to one region but different lighting condition makes their



color become different. We run Superpixel Segmentatiom model with sigma = 0.8, k£ = 300, and
min = 5 on camera images.

5.4 Object Detector on the combined image

The object detector for this CCM model is based on the implementation of Simple Object Detector
with Gentle Boosting with 120 week classifiers [2, 3, 4]. We used LabelMe to annotate images from
Kinect camera and used those annotation on the combine images from 3 models (surface detector,
edge detector, and superpixel segmentation). The features for training this CCM model is the
template of the objects and the entire scene that contains the object including position of vertical
and horizontal surfaces.

Gentle AdaBoost

Training Data (z1,41), ..., (N, yn) with z; is a vector valued feature and y; € {—1,1} and
M weak classifiers.

1. Start with weigths w; = 1/N,i=1,2,...,N, F(x) = 0.
2. Repeat form=1,2,.... M

(a) Fit the regression function f,,(x) by weighted least-squared of y; to x; with
weights w;

(b) Update F(z) < F(x) + fm(z)

(¢) Update w; + w;eVifm(®@i)

3. Output the classifier sign[F(z)] = sign[>-M_; fim(z)]

The following image is an example of a camera image then the outputs from 3 classifiers of the first
layer of CCM model.

The left most among 3 pictures below is computed using surface detector from 3D point cloud,
then the point cloud segments are projected into the camera field of view. We use blue to label
horizontal surfaces, red to label vertical surfaces, and purple to label other random surfaces that
neiter vertical nor horizontal.. The middle picture is generated from edge detector, and the right
most computed from superpixel segmentation.



And the type of the image below is the alignment of 3 classifiers that will be fed into the object
detector both for training and testing purposes.

6 Experiments

Data needed for this project includes both real 3D point clouds and camera images. Due to
insufficent time for data collection and labelling, the dataset only has a size of 100 images and the
corresponding point clouds. About 80 images are use as training data and remaining images are
used for testing. Training on such a small size dataset is subject to overfitting, thus, the goal of the
experiment not to show how accurate our CCM object detector is but to compare our CCM model
with the Non-CCM model is solely based on camera images and the object detector in the second
layer of CCM [2]. Due small dataset, it is expected that precision and recall rate of both CCM
and Non-CCM object detectors are very low. CCM and Non-CCM object detectors are trained
and tested on 9 different objects: computer, monitor, keyboard, mouse, chair, bottle, cup, plate,
and box in every scene. We use the statistic formula of Fy Score to measure the test’s accuracy:
F=2x %. The average precision, recall, and Fy Score accuracy for all objects is
recorded in Table 1. The presicion rates of both models are very low because the size of objects
varies across images and some objects appear less than 10 times in the entire data set which is very
difficult for both models to generalize the templates of objects.

This experiment achieves the goal of showing that this CCM object detector performs better than
the Non-CCM in precision and recall, F} Score Accuracy rate. However, it is not yet sufficient to
prove a significant improvement of our CCM model because the precision and recall rate of our



CCM model is no where comparing to many state-of-the-art object detectors that rely on single
image. In addition, training and testing on a small set of data do not give us accurate results since
one misdetected or misclassified object is counted toward large percentage of precision and recall
rate.

Table 1: CCM vs. Non-CCM Object Detector
CCM Model Non-CCM Model

Precision 4.5659% 1.8006%
Recall 43.6111% 26.7007%
Fy Score Accuracy 8.2663% 3.3737%

7 Discussion and Future Works

One of our main future works for this project is the calibration of Kinect camera images and its
depth information. Because Kinect was recently released for about one month, not many works has
done to study the technical details of this device including the transformation from depth sensor
coordinate system to camera coordinate system and conversion from depth information to 3D point
cloud data. Since the Kinect depth sensor is steoreo sensor, its depth information is subject to noise.
The next step after calibration is apply noise filtering on 3D point cloud data.

Rebuilding surface detector is the most important work needs to be done. The main goal of this
project is build object detector with dependencies on planar surfaces. The current surface detector
misclassifies overhangings as vertical surfaces.

To achieve better, recall, and accuracy rate, a clear probabilistic graphical model is needed to
define the dependencies between object appearance and its location relative to the location of
major vertical and horizontal surfaces of the environment.

Data collection and labelling process is time-consuming and require much effort, especially with this
project. A data set of around 2000 images will perform much better than the current data set of
100 images. This is essential to verify the improvement of this method comparing other methods.
Although computer generated images can be easily obtained, it is impossible to have compute
generated 3D point clouds. Thus, real 3D data and images play a vital role in this project.

8 Conclusion

Due to time constraint, many works has not been done, thus, the experiment might not provide
a convincing results. However, it is true that our CCM Object Detector performs better than
Non-CCM without the implementation of very sophisticated machine learning models. Our CCM
model promises a more robust object detector for robots.
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