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Abstract 
     We consider the problem of how to grasp an object given that we know its desired 
placement location. Instead of making path planning an intrinsic part of the grasp point 
evaluation algorithm, we attempt to evaluate the “goodness” of certain grasps by 
calculating metrics on the grasps and object point clouds themselves. This work aims 
to capture human intuitions about good grasps for certain placements and uses 
machine learning as a method of refining them. 

Introduction 
Grasping objects from stereo vision can be formulated as a supervised learning problem by 
learning the weights of 2D features on the disparity image. Using a maximum submatrix 
algorithm to find a rectangle that represents an oriented grasp point allows for an algorithm that 
runs in O(n3), which is quite fast in practice and effective if there is a good grasping point 
distinguishable from the perspective of the camera. If not, the algorithm could be extended by 
taking pictures from multiple views and comparing the scores of the rectangles. 
 
However, from a personal robotics standpoint, there is more to consider when picking up an 
object than whether the robot could grip it at that point. Most of the time, the purpose of picking 
up an object is to put it down somewhere, often in a known terminal orientation. As humans, we 
naturally know how to do this without carefully planning the object’s movement. We consider 
features of the object -- how much clearance we will have, how stable the grasp is, whether the 
object will slip out of our hands when we are manipulating it, but this not very difficult in most 
cases. For example, for a household robot, it will be important when placing things on shelves 
for there to be a clear method for removing the hand after making the placement. One simple 
rule to guarantee this is to have the robot always grasp the object such that its hand is between 
the robot and the object in the final configuration. We propose a machine learning algorithm that 
captures the spirit of such rules. 
 
 



 
Figure 1: If the intent is to flip the cup over, the grasp on the left will result in failure due to the 
gripper colliding with the ground. A better grasp is shown in the middle picture where the 
transformed position (right) is also a good grasp. 

Problem Motivation 
One motivation is to improve current grasps by removing bad grasps.  To do this we combine 
3D point cloud data in both the initial and final position of the object to calculate our features. 
This differs from current grasping algorithms because it uses the point cloud of the object in the 
final orientation as well. 
 
The same intuitions about grasping objects with limited information will be applied to tasks in 
personal robotics, to allow quick calculations to be done in cases where many alternatives are 
possible. As the grasping problem approaches a solution, placing will increase in importance. 

Problem Specification 
Given a stereo image, point cloud, rigid-body transformation from object initial to final position 
and a ranked list of grasps, re-rank the grasps using SVM-learned feature weights. 

Approach 
Machine Learning algorithm 
Compute various features from the initial point cloud and terminal point cloud, calculated from 
the input rigid-body transformation. Use outputs of the grasping algorithm as training data, 
ranked Good, OK and Bad, and use SVM Rank to learn weights that favor good grasps. 

Algorithm 
We have chosen to use SVM-rank, implemented by Thorsten Joachims, as the learning 
algorithm. Our problem has a small search space as only 100 or so grasps are output by the 



front-end machine vision algorithm. The following features will be used when determining which 
grasp is best.  

Features 
One of the challenges of choosing features is to not overlap too much with the ones used in the 
original grasping algorithm. The role of the algorithm is not to second guess the chosen grasp 
points, but rather to evaluate them along a different metric. Since we are taking a reduced 
subset of points, we have time to evaluate more computationally intensive features, although to 
take too much time reduces the competitive advantage of the machine learning approach vs. 
motion planning. 
 
1. Original score 
Output of the original grasping algorithm 
 
2. Obstacle proximity 
Original and transformed 
We would like to make predictions on a path 
existing between the initial and final configurations 
without explicitly calculating that path. One of the 
indicators that likely predicts this is the distance 
between the grasp point and any known obstacles 
in the initial and final configurations. 
 
3. Distance from object centroid (dc) 
Since the first stage algorithm we are using does not use the point cloud, this algorithm will take 
into account the smaller amount of effort required to grasp an object near its center of mass. 
Another possible optimization at this stage would be concatenating multiple point clouds taken 
from different angles to have a more complete view of the object. 
 
4. Object length 
We derive the following features from the above: minimum obstacle distance (dmin), maximum 
obstacle distance (dmax), dc, dmin/length, dmax/length, dc/length. Evaluating these features 
takes around a second per pose-transformation pairing. 

Transformation 

Computing the features in the object’s placing position requires transforming the original point 
cloud to this new position. We define an object transformation by separating it into a translation 
in 3 dimensions, and a rotation specified with the yaw, pitch, and roll the objects undergoes in 
the transformation. With these six values along with the object’s original position, we compute a 
transformation matrix that transforms any point in the original coordinates to the objects 
transformed placing position. By multiplying each point in the original point cloud by this 
transformation we obtain a point cloud of the object in the desired placing position. 
 

 
Figure 2: labeling data in MATLAB 



Object positions can be defined arbitrarily, but the point cloud rotation will occur about this point. 
Thus, we choose points in the center of objects so as to simplify the transformations. 
 
After a grasp is determined the placing orientation of the arm must be calculated. This is done 
with the same transformation matrix used to transform the point cloud. By multiplying the single 
grasping point by the matrix we obtain the arm’s placing position in 3D space. Computing the 
yaw pitch and roll for the arm in this placing position is done by post-multiplying the original 
grasping rotation matrix with the transformation matrix the object undergoes. The arm’s placing 
yaw pitch and roll is then computed from this matrix. 

Data 

Training 
Training was created by manually labeling grasps as either bad, ok or good. We trained on two 
objects in three different poses each with two to five transformations per pose for a total of 
3,200 training rectangles.  We measured precision by counting what percentage of the top, top 
three and top five grasps, after re-ranking, were labeled with good in the training data.  Using 
50-50 cross validation gave our algorithm a score of 90% on all three measures.  It is difficult to 
expand the set of training objects because the objects must have several stable orientations 
and also more than one grasping position.  Rod-like objects satisfy neither of these criteria.  
Plates have two stable orientations, but they can only be grasped one way.   
 

 
Figure 3: Some poses and transformations for 
the objects we used to train on. 
 
Figure 4: Training curve for our dataset, with 
10%-60% used for training.  Most of the 
information in our dataset is contained in less 
than 10% of the examples.  Figure 5 shows the 
results of omitting certain features. Omitting any 
single feature had minimal effect, but by omitting 
the two features that make use of the minimum 
obstacle distance, precision is reduced to 50%. 

 



 
  

      

Figure 6: placing a martini glass (from left): a) original grasps b) putting down to the left c) 
putting down to the right. The top grasp is blue, the next 10 grasps are green, and the remaining 
100 grasps are yellow. 
 
 

      
 

Figure 5: effects of 
omitting features on 
precision 
 

Original grasp 
 

Re-ranked for 90° left 
 
 

Re-ranked for 90° right 
 
 

Original grasp 
 

Re-ranked for 90° forward 
 
 



Figure 7: When viewing a Styrofoam cup from above there the first stage algorithm returns 
many good grasps all along the top rim. When given a transformation that turns the cup forward 
onto its top side, our algorithm chooses the grasps that are as far away from this side as 
possible, and chooses grasps on the bottom rim of the cup as seen in the picture. 

Experiments and Results 
We performed testing on the Adept Viper arm, using Marcus Lim’s 3D grasping algorithm as our 
first stage algorithm. We tested the robot on a martini glass, a mug and a cup without a handle.  
We tested 2-5 transformations per object and evaluated our chosen grasp at five stages. We 
checked 1) if the grasp was spatially well-positioned, i.e. it wasn’t to close to an obstacle in the 
initial or final configuration, 2) if it could be grasped by a human, 3) if we would have labeled it 
as good, 4) if the robot could grasp the object and 5) if the robot could place the object. 
 
Criteria  Score 
Spatially well-positioned 100% 
Human graspable 82% 
Would be manually labeled as good or ok 82% 
Robot grasping success 82% 
Robot placing success (if grasp was successful)  72% 

We could improve the grasping part of the algorithm by taking into account the score given to 
the rectangles by the first stage algorithm.  Assuming that a higher score correlates to more 
grasp-ability, taking this score into account would increase our grasping success rate.  To 
improve placing, we need to estimate the shape of the object and the obstacles in the scene 
and use motion planning to plan a placing path. We also need to take into account how the 
configuration of an object changes when it is picked up. 
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