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1 Abstract

The ability to conduct high-quality automatic 3D segmentation of tumors in CT scans is of high
value to busy radiologists. Discriminative random fields (DRFs) were used to segment 3D volumes of
lung tumors in CT scan data. Optimal parameters for the DRF inference were first calculated using
gradient ascent. These parameters were then used to solve the inference problem using the graph
cuts algorithm. Results of the segmentation were varied, with DRFs performing better on isolated
tumors, but exhibiting bleed-through to adjacent tissues with similar intensities. Improvements can
be made in the selection of features, discriminative models, and parameter optimization algorithm.

2 Introduction

Markov random fields have been used in the area of computer vision for various tasks, such as
image segmentation. The problem is often formulated as a classification problem: Given a finite
set of labels corresponding to objects, label each pixel in the image with the object it belongs to.
There are many variants of this basic problem, and their difficulties vary greatly between them.
For example, using segmentation to correct for noise in an OCR context tends to be easier than
identifying objects in a real world scene.

One of the more popular interpretations of Markov random fields has been as an energy mini-
mization problem. We use the pixel grid as a graph, in which each pixel is a vertex and neighboring
pixels share an edge between them. We can then define an energy cost for any given labelling as
a function of various features of the MRF. In the traditional MRF definition, the energy potential
can be expressed as an association potential function of each node and an interaction potential
function of pairs of neighbors. The goal is then to find an optimal labelling which minimizes the
total energy.

MRFs have been applied to a wide variety of vision problems. While 2D images have generally
been the most popular segmentation problem in computer vision, the framework can be easily
generalized to three dimensions, where we can consider a neighborhood of 6 voxels: up, down, left,
right, front, back. This has applications in medical imaging, where it is often of interest to segment
out volumes such as organs or tumors [9]. Most commercial software for segmentation tasks today
use some form of human-assisted region growing algorithm.

In some aspects, MRFs possess an advantage in the segmentation problem. Theoretically, with a
correct problem formulation (i.e. a convext potential function), MRFs give a good estimate backed
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by strong math. Solving the inference problem afterwards can be done quickly and optimally (for
binary labels, for multiple labels, within an approximation factor) using a variety of optimization
methods, such as graph cuts [2] [5] [1] [3]. There is a caveat, however: while MRFs give a good
solution to the problem, it does not guarantee anything about how well the problem formulation
itself works. Often, picking the right potential functions can be a matter of trial and error.

There are several variants of MRFs out in the literature. In particular, conditional random
fields (CRFs) generalize the MRF formulation by allowing data to factor into the traditional MRF
interaction potential formulation, with a discriminative model instead of a generative model. Kumar
and Herbert’s discriminative random fields (DRFs) [6] extends the usual work of conditional random
fields to multiple dimensions. In particular, Kumar and Herbert’s construction allows for the use
of a variety of discriminative models, like SVMs [7].

Our goal in this paper is to apply DRF methodology to the segmentation of lung tumors in
CT scans. A previous study by Lee et al. have attempted tumor segmentation in the brain with
MRI scans [7]. CT lung tumor segmentation has some important differences. Lee et al.’s study
used specific information about each patient’s brain’s spacial location to define better features.
We would like to avoid using patient specific information when possible. In addition, the MRI
scans used information from a variety of different modalities to aid in feature selection. CT data
is limited to one modality, and in our particular case we do not even have access to pre-contrast
agent injection scans. CT scans do have the advantage that a reported intensity for a given voxel
corresponds to an actual physical unit, so relative intensities are not an issue.

One of the advantages of using DRFs is the ability to use any discriminative model for learning.
Lee et al., for example, used an SVM classifier as the discriminative model for their brain tumor
segmentation. Unfortunately, a preliminary study using a variety of features did not get good
results using SVM classification.

3 Methods

The data set consisted of 6 abdominal CT scans of a patient in a time series study. There were
around seven tumors detected in each scan, for a total of 41 different tumors. The total subvolume
for all 41 tumors consisted of about 930000 negative voxels and 3300 positive voxels. All data was
provided by Dr. Krishna Juluru at Weill Cornell Medical College. Ground truth segmentations
were labelled by hand.

We will use supervised learning to learn a discriminative random field model of a lung tumor.
After we have learned the parameters, we can solve the inference problem using graph cuts.

We construct a DRF model of the CT volume as follows:
Let G = (S,E) be the graph that represents the 3D volume, where each node in S represents

a voxel and an edge in E connects adjacent voxels in a 6-neighborhood. Let ni be the observed
intensity at voxel si ∈ S, pi be the 3-vector of the relative coordinates of voxel si in the volume,
and let label xi ∈ {−1, 1} be the label associated with si. We define an observation yi = (ni, pi).
The random variables xi obey the Markov property that Pr(xi|y, xSi) = Pr(xi|y, xNi), where Ni

is the set of neighbors of si and S
i is everything in S except si.

Following Kumar and Herbert’s notation, we use the Hammersley-Clifford theorem and assume
only pairwise clique potentials to be nonzero, and thus write:
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Pr(x|y) =
1
Z
exp(

∑
i∈S

Ai(xi, y) +
∑
i∈S

∑
j∈Ni

Iij(xi, xj , y))

Where Z is the partition function, Ai is an association potential and Iij is an interaction
potential.

3.1 Association potential

We model the association potential discriminatively using a logistic model, since the labels are
binary. We will define a feature vector fi at site si as a function of the observations y. We first
define some constants calculated from an outside source. The distribution of lung tumor voxel
intensities was modeled as a Gaussian, with constants µint and σint calculated from the training
data. The location of the lung tumor voxels was also modeled as a Gaussian deviating from a
prior known location, with constants l = (lx, ly, lz) and σloc = (σx, σy, σz). These constants are
pre-computed prior to the DRF model construction.

We then define our feature vector to be:

fi(y) = [
(ni − µ)2

σ2
,
(pi − l)2

σ2
loc

]

Our two features capture the distance between the voxel intensity and the average voxel intensity
of a lung tumor and the distance between its spacial location and a previously known location. The
aforementioned constants specify some prior knowledge about the amount tumors can move and
what intensities the tumors should be.

We then have the option of transforming our feature vector via some non-linear transformation
to hi(y) = [1, φ1(fi(y)), ...φ2(fi(y))]T , which is a kernal mapping of our original feature vector with
the introduction of a bias element. As an initial test, we simply used a linear kernel - that is,
φ(fi(y)) = fi(y).

Our probability that we’re trying to maximize is then:

Pr(xi = 1|y) =
1

1 + e−wT hi(y)

Since Pr(xi = −1|y) = 1− Pr(xi = 1|y), we can express this probability more compactly as:

Pr(xi|y) =
1

1 + e−xiwT hi(y)

Finally, we model the association potential as the log of this probability:

A(xi, y) = log(
1

1 + e−xiwT hi(y)
)

The parameter to learn in the association potential is then w.

3.2 Interaction potential

We model the interaction potential using the pairwise smoothing of the Ising model, modulated by
the difference in intensities of the two sites. We will define a new feature vector δij(y) that captures
this difference:
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δij(y) = [1, |ni − nj |/1000]T

Where the first element is there to accomodate a bias parameter. We then define the interaction
potential informally as a modification of the Ising model potential used in a typical Markov random
field, using a simplified form following that in Kumar and Herbert:

I(xi, xj , y) = β(xixjvT δij(y))

The β term is a constant term controlling the degree to which the smoothing cost affects the
potential. The parameter to optimize, then, is v.

3.3 Learning

The learning problem can then be formulated as finding the maximum likelihood of Pr(x|y;w, v).
To evaluate this, however, we would need to evaluate the partition function Z, which is NP-hard
because we would need to sum over 2|S| number of possible labellings. Instead, for simplicity we
maximize the pseudo-likelihood: Pr(x|y;w, v) ≈

∏
i∈S Pr(xi|xNi , y;w, v). That is:

Pr(x|y;w, v) ≈
∏
i∈S

1
zi
exp(A(xi, y) +

∑
j∈Ni

I(xi, xj , y))

zi =
∑

xi∈{−1,1}

exp(A(xi, y) +
∑
j∈Ni

I(xi, xj , y))

Defining θ = (w, v), with M training examples, the θ that maximizes the log of this pseudolike-
lihood is:

θ̂ = arg max
θ

M∑
m=1

∑
i∈S

(A(xi, y) +
∑
j∈Ni

I(xi, xj , y)− log(zi))

(1)

We use gradient ascent to calculate a θ that maximizes this expression. The maxima is global
since the function is convex.

3.4 Inference

An exact maximum a posteriori solution can be obtained for the pairwise Ising model by a graph
cuts algorithm. We cut off the interaction potentials to a minimum of 0, since graph cuts cannot
deal with negative interaction potentials. Graph cuts was performed using Olga Veksler’s gco-3.0
library in C++ with a Matlab wrapper [2] [3].

4 Results

4.1 Gaussian model of lung tumor voxel intensities

We chose to model the intensity values of positive voxel examples as a Gaussian. As one can
see from Figure 1, this is an acceptable model as an approximation, though it suffers from certain
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Figure 1: Histogram of positive tumor intensities. There may be two separate peaks close together, but a
Gaussian fits well enough as an approximation. There also appears to be a heavy tail, which is likely due to
perceptual differences in visual labelling of ground truth.

Figure 2: Histogram of negative tumor intensities. There is a large peak at around -1000 due to the fact
that the lungs are mostly empty air. There is however a significant peak at around the same intensities as
tumor intensities, which makes feature selection more difficult.

characteristics such as a heavy tail which skews the mean and variance. Compared to the histogram
of negative values seen in Figure 2, this is negligible. Of particular note is the fact that negative
examples also exhibit a peak at around the same intensities. In fact, due to the sheer number of
negative training examples compared to positive ones, the negative peak overwhelms the positive
peak. This is not surprising, as other tissue besides tumors can very well have similar intensities.
Nevertheless, this is an issue we must overcome.

4.2 Gradient Ascent

We used gradient ascent to calculate the optimal parameters w and v. However, because we have
more than 930000 negative voxel examples and only 3300 positive examples, the convex function
to optimize exhibited a sharp plateau that made gradient ascent difficult. As a result, good initial
parameter values were required for gradient ascent to work properly.
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(a) Inferred segmentation.

(b) Custom graph cuts segmentation.

(c) Ground truth segmentation.

Figure 3: Comparison of an inferred segmentation versus a custom graph cuts energy function and the
ground truth labelling. Inferred segmentation gets fairly close.

4.3 Segmentation

Parameter learning was done through 4-fold cross validation on a total of 40 data sets. Segmentation
was done using graph cuts. An approximation to the potential function had to be made in order to
keep costs positive. The average precision was 0.48 and the average recall was 0.82. This performs
better than a custom graph cuts energy function in recall (0.64) and worse in precision (0.77). A
slice of an example segmentation, a custom graph cuts segmentation, and the ground truth can be
seen in Figure 3.

For tumors attached to adjacent tissue of similar intensities, the segmentation exhibited some
bleed through to the surrounding tissue. An example can be seen in Figure 4. This is because the
features selected were insufficient to differentiate the adjacent tissue areas from the tumor.
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(a) DRF segmentation.

(b) Custom graph cuts segmentation.

(c) Ground truth segmentation.

Figure 4: Example of segmentation bleeding through to adjacent tissue. The custom graph cuts energy
function bleeds through on the same slice, but the DRF segmentation bleeds through to a new slice.
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5 Discussion

Segmentation results using the DRF framework were generally pretty sharp, with some exceptions.
The algorithm worked particularly well on tumors that were well isolated in space - in other words,
not next to larger tissue areas of similar intensity. When tumors were attached to larger tissue
areas, however, the segmentation tended to bleed through to adjacent areas, causing a large error
in the precision of the segmentation.

Overall, the recall rate of 0.82 is better than 0.64, the recall rate of the custom graph cuts energy
function segmentation, where the energy function was tweaked by hand. The previous algorithm
also makes stronger assumptions about the location of a tumor. The precision of 0.48 is far worse
than the previous precision of 0.77. The biggest contributing factor tho this poor precision are the
bleed through areas in the segmentation. There were also some cases in which the segmentation
was slightly overestimated, such as in Figure 5, where the false negatives are a small ring around
the tumor. Since the previous graph cuts algorithm tended to consistently underestimate the
segmentation, it had a much higher precision.

Figure 5: Areas of a segmentation that the algorithm included which was not in the original ground truth
segmentation.

It is difficult to compare the performance of our current problem formulation with the perfor-
mance of other studies done in the subject. For example, Huang et al. did work on the diagnosis
of hepatic (liver) tumors using SVMs and texture analysis [4], but their problem was classifying
tumors as benign or malignant versus actually comparing the size of the tumors. Furthermore,
hepatic tumors are different from lung tumors in their characteristics. Earlier studies using Markov
random fields also only addressed the problem of detection [8]. Zhang et al. did work on brain
tumor classification using one-class SVMs on MRI data and managed to achieve a mean recall
of around 0.9 and precision between 0.6 and 0.99, but they used both pre-contrast and contrast
images in order to find a good margin [11]. Trials with two-class SVMs using our CT data did not
return good results, but one-class SVMs may be something to try, and can even fit into the DRF
framework. Lee et al.’s work similarly involved MRI data on brain tumors and reported results
which implied their precision and recall was around 0.8 [7]. Non-learning approaches at lung tumor
segmentation had mixed results as well [10]. Opfer et al. also mentioned that variation between
manual segmentations by different radiologists was also significant.

The current formulation of the problem suffers from several factors, most notably the dearth of
good features and issues with parameter optimization. Future work should be aimed at fix these
issues. Possibilities for features include texture features and intensities of neighbors. Different
optimization methods may produce more stable solutions for parameter optimization. With better
features also comes the possibility of trying different discriminative models, such as large-margin
classifiers, or linear models with various kernels.

8



The main advantage of the DRF learning framework is the automatic learning of energy function
parameters for segmentation. The previous graph cuts segmentation used a custom energy function
and parameters that were tweaked repeatedly by hand, and often through trial and error, until
something reasonable was achieved. A possible approach to improving the DRF framework is to
formulate the energy function more like our previous energy function, and learn the parameters
for that automatically. Unfortunately, our previous energy function was not convex, and thus is
difficult to optimize.
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