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Abstract 

  Object grasping is one of the fundamental tasks of personal robots. There are 
several approaches to this problem, some requiring a 3D model of the object. 
Saxena et al. [1] proposed a learning algorithm which does not require a 3D 
model; instead it identifies points on the object corresponding to good 
grasping locations based on computer vision.  

  Our approach identifies oriented rectangular regions instead of points as this 
representation is more suitable for a parallel-plate gripper.  Since these 
rectangles can have various locations, sizes and orientations, such a 
representation is computationally expensive.  To tackle this problem, we used 
histogram features that can be computed in (amortized) constant time for each 
rectangle. Our learning model is based on a linear SVM ranking model trained 
using SVM-rank [2].   

  Results from robotic experiments show that our algorithm performs well on 
both trained objects and novel objects, indicating that it generalized well to a 
wider class of objects. 

1 Introduction 

The goal of our project is to program a robotic arm pick up objects autonomously with 
computer vision.  While this task may seem easy to a human being, programming a robotic 
arm to pick up objects is not a trivial task, especially if it is an object that the robot has 
never seen before. 

Modern-day robots are capable of carrying out very complex and specialized manipulation 
tasks such as assembling a car, and they can perform these tasks accurately and precisely.  
Humans, on the other hand, might have some trouble with achieving the same level of 
precision, but are capable of performing a wider range of tasks.  We are interested in 
designing robots that can perform general tasks such as picking up an object from the 
ground autonomously. 

This is not an easy task since the robot has to be able to interpret its environment and 
identify objects, determine suitable grasping configurations and plan its motion from its 
current configuration to the desired configurations while carefully avoiding obstacles.   

There are many related work in this area.  If a full 3-d model of the object is available, then 
approaches such as ones based on form and force closure [3], friction cones [4], or other 
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Figure 1: Adept Viper r

Currently, we restrict grasping regions to 
representation provides enough information to derive a range of suitable grasping 
configurations [5].  However, if the algorithm performs fast enough, then we can consider 
extending our search space by including parallelograms or 

 

2 Learning model  

Instead of directly tacking the problem of find
image, we decided to tackle an easier problem: does a given 
correspond to a suitable grasping rectangle?  Given such a classifier, we ca
rectangles from an image and evaluate them with the classifier to find suitable grasping 
rectangles. 

However, this approach is computationally expensive.  Suppose that the classifier take O(k) 
amount of time to classify each rectangle.  
(rotations), this would take ���
� is the number of different orientations
to run in a reasonable amount of time, the classifier has to be computationally efficient.

methods can be applied.  However these approaches cannot be applied to unknown objects 
d model of.  3-d reconstruction is difficult for objects without 

texture, and can only work on visible regions of the object. 

In contrast to these approaches, we are working on a robust machine learning algorithm that 
-d model of the object.  It takes as input an image of the scene 
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configuration that carefully avoids any obstacles along the way.  We are working with the 
Adept Viper robotic arm shown on figure 1. 

 
Adept Viper robotic arm with mounted Bumblebee stereo camera

Currently, we restrict grasping regions to oriented rectangular regions in the image as this 
esentation provides enough information to derive a range of suitable grasping 

However, if the algorithm performs fast enough, then we can consider 
extending our search space by including parallelograms or quadrilaterals. 

Instead of directly tacking the problem of finding suitable grasping regions in a given 
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While the set of all possible rectangles is very large, the number of good grasping rectangles 
is much smaller.  Thus, the algorithm has to sieve through most of the negative examples 
and find the positive ones. 

Since we are only interested in identifying the best rectangle, a traditional binary classifier 
would not be appropriate as it might classify more than one rectangle as positive.  Also, 
with a binary model, we can only separate the data into two classes - good or bad.  
However, based on our judgment, we can distinguish the best rectangles from the good ones.  
For example, while it is possible to grasp a cup by its lip, it would be best to grasp it by its 
handle since that grasp is more stable and would permit easy manipulations if desired in a 
later stage.  Using a binary model, we are unable to input such information into the model. 

SVM-rank [2] is a variant of the traditional SVM that is designed to learn ranking models.  
This type of problem is called ordinal regression, where the label 	
 of an example ��
, 	
� 
indicates a rank instead of a nominal class.  The goal of ordinal regression is to learn a 
function ℎ��� such that for all pairs of examples, 

ℎ��
� > ℎ���� ⇔ 	
 > 	� . 

This model can be further refined to include such constraints only for pairs of rectangles 
from the same image / point cloud.  Without this relaxation, a good example �
 in one image 

must have a higher ℎ��
� than ℎ���� of all other examples �� on all other images.  This need 

not be true as we might find examples that are relatively weaker in one image may be better 
than the best examples on another image.  During detection, we are only comparing between 
rectangles from the same image and thus, if the model is well trained, it should be able to 
distinguish the best rectangle from the rest of the rectangles.  For the sake of computational 
efficiency, we use a linear kernel for SVM-rank. 

 

3  Data col lect ion 

With the camera mounted on the robotic arm, we took images of 80 different objects, each 
from 2 different viewing angles to yield 181 examples.  Based on our evaluation metric (see 
Evaluation section), we labeled all positive rectangles on each of these images such that 
there was at least 50% overlap.  Figure 4 shows some of these manually labeled positive 
examples.  The negative rectangles are generated randomly to avoid subjective bias.  Table 1 
shows the number of examples for each object type.   

 
Figure 4: Manually labeled positive rectangles.  Red lines indicate the orientation of the rectangle, 

which corresponds to how the parallel-plate gripper should be orientated to pick up the object. 



We split the dataset into approximately 65% training and 35% evaluation, and the division is 
also shown in table 1. 

Table 1: Number of instances of different object types 

Object Type # instances # training instances # test instances 

Bowl 6 5 1 

Cup 43 30 13 

Martini 9 5 4 

Misc 32 22 10 

Plate 8 5 3 

Rod 34 26 8 

Tongs 8 4 4 

Toy 29 21 8 

Total 169 118 51 

 

4 Background subtraction 

Given the large search space, we decided to use background subtraction to help prune out 
regions on the image that do not contain the object of interest.  Since background 
subtraction is not our area of expertise, we decided to take the simplest approach of taking 
two images, one with the object and one without.  We then used the Mixture of Gaussians 
algorithm for background subtraction available in OpenCV [6].  Since we are also interested 
in the areas around the object, we dilate the result from the background subtraction to yield 
an object mask.  From our experiments, we realized that the background subtraction is prone 
to excluding parts of the object, so we relaxed our criterion and considered all rectangles 
that have all four corners in the object mask, so this would also consider areas that would 
have otherwise been excluded due to the imperfect background subtraction. 

 

5  Features  

A. Image features 

In order to extract visual cues such as edges, texture, and color, we first transformed the 
image into YCbCr space. Edge features are detected by convolving the Y (intensity) image 
with 6 oriented edge filters.  Texture information is extracted by applying the 9 Laws' masks 
to the Y-image, and color information is extracted by applying the first Laws' mask to the 
color channels (Cb and Cr).  The 9 Laws' masks and 6 oriented edge filters are shown in 
figure 5.  As a final step, we normalized all filtered images to between 0 and 1.  This is used 
to allow the features to be robust to illumination changes caused by different lighting 
situations. 

 
Figure 5:  The 9 Laws’ masks and 6 oriented edge filters 

In order to compute features for rectangles of all sizes, we decided to use normalized fuzzy 
histograms [7].  Histograms are appropriate since they can be calculated for inputs of all 
sizes and they describe the distribution of the inputs, and produce a short, fixed-length 
feature vector.  We chose fuzzy histograms in place of normal histograms as they are more 
robust to small changes in input values.  If an input value is near a bin boundary, a small 



change in the value can cause a shift from one bin to another in the histogram.  This means 
that values near boundaries are extremely sensitive to noise.  To solve this problem, fuzzy 
histograms are calculated based on (linear) fuzzy partitions (figure 6).  For each bin i, we 
define a bin center �
, and we allocate each input value 	� to bins �, � + 1 such that �
 < 	� <
�
�� in the manner that bin i receives 1 −

���� 

� !"�� 
 and bin � + 1 receives 

���� 

� !"�� 
.  In this way, 

small changes in the value of 	� will lead to a commensurate change in the fuzzy histogram. 

 

 
Figure 6:  Fuzzy histogram partition functions 

 

In order to capture details in the image, we decided to use 15 bin equally spaced between 0 and 

1.  We also partitioned each rectangular region into 3 equal-sized horizontal strips.  This is useful 

as it is often the case that the center strip looks very different from the other two strips in positive 

examples.  Thus, allowing this partition allows us to pick up such subtle differences that would 

otherwise be averaged away if combined into a single histogram for the entire rectangle.  Using 

this partition and the 15 bins, we have a total of 3 × 15 × 17 = 765 image features.  Figure 7 

shows examples of image feature histograms for positive and negative examples.   

  
Figure 7: Image feature histograms, positive example on the left and negative example on the right 

 

B. Point cloud features  

From the point cloud collected, we calculate the normal vector and curvature at every point 
in the point cloud by fitting a surface through the point and its 50 neighboring points.  Since 
we are most interested in the z-axis which corresponds to the camera's point-of-view, we 
ignore the x and y positional and normal information.  Using the z position, surface normal 
in the z-direction and the local curvature, we apply the same 3-strip partitioning and 15-bin 
fuzzy histogram to yield a total of 3 × 15 × 3 = 135 features (example in figure 8). 
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Figure 8: Point cloud feature histograms, positive example on the left and negative example on the right 

In order to derive more information from the point cloud, we also calculated the Fast Point 
Feature Histogram (FPFH) [8] signature for every point.  FPFH are informative pose-
invariant local features that represent the underlying surface model properties at each point.  
They are computed based on certain geometrical relations between the point and its 
neighbors.  The FPFH computation produces a 33-bin histogram vector at each point and we 
sum them up for every point in a given rectangle and normalize them by the number of 
points in the rectangle.  Figure 9 shows an example of the FPFH feature histogram for a 
positive and a negative labeled rectangle.  As we can see, the difference is not very 
significant, and we expect that this set of features is not very discriminative for our 
problem. 

  
Figure 9: FPFH features, positive example on the left and negative example on the right 

 

6 Evaluation metric  

In order to determine the accuracy of our method, we used the metric proposed by Jiang et 
al [5].  Specifically, we compare our top predicted rectangle with a ground truth rectangle.  
If the orientation difference is less than 30* and the ratio of the area of intersection of the 
two rectangles to the area of the predicted rectangle is more than 0.5, then we consider this 
as a correct prediction.  If there are multiple ground truth rectangles, we repeat the 
comparison with all the ground truth rectangles and take the best score.   

+�,-. = 1/Orientation difference<=>?@ ×
Area of intersection

Area of predicted rectangle
 

It is for this reason that our ground truth labels had to be mutually overlapping so that any 
of the good predicted rectangles will have at least a 50% intersection ratio with one of the 
ground truth labels. 
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7 Results  and discussion 

For comparison, we ran the algorithm by Jiang et al. [5] on our dataset and the results are 
shown in table 2.  In order to gauge the influence of various features, we evaluated the 
results using various subsets of features.  The baseline algorithm is the best score possible 
by predicting a fixed rectangle in every test instance.  To do this, we enumerate all possible 
rectangles, and calculate the test scores for all of them, and pick out the best scoring 
rectangle.  In addition to the features discussed above, we also calculated non-linear 
combinations of the features as suggested by Jiang et al.  Since we subdivide our rectangles 
into three horizontal stripes, r1, r2 and r3, we get three equal-length feature vectors for each 
sub-rectangle.  We for each feature in these vectors (f1, f2 and f3), we calculated three non-
linear features: f1/f2, f3/f2 and f1×f3/f2.  

Table 2:  Summary of results of various algorithms 

Algorithm Train Test 

Baseline - 22.60% 

Previous work 40.63% 52.83% 

Image features only 56.78% 52.94% 

PC features only 50.00% 50.98% 

Image + PC features 62.71% 54.90% 

Image + PC with non-linear features 66.10% 60.78% 

Image + PC + FPFH with non-linear features 66.10% 62.75% 

As we can see, our algorithm shows a marked improvement over previous work.  However, 
the test scores are still quite low, and we suspect that this might be because our dataset is 
more challenging as it contains a wide variety of objects.  Table 3 shows the breakdown of 
the results on various object types.  From the results, our trained model is adept at 
identifying good grasping rectangles in rod-shaped objects and toys, but performs less 
satisfactorily on bowls and cups. 

Table 3: Summary of results for various object types 

Object type Train Test 

Bowl 60.00% 0.00% 

Cup 40.00% 30.77% 

Martini 40.00% 50.00% 

Misc 59.09% 60.00% 

Plate 40.00% 100.00% 

Rod 96.15% 87.50% 

Tong 50.00% 100.00% 

Toy 90.48% 75.00% 

Overall 66.10% 62.75% 

We also conducted experiments with the robotic arm and the results on known objects 
(objects that were represented in the training set) are as follows: 

Table 4: Known object experimental data 

Object Type # instances Prediction Grasping 

Bowl 4 50.0% 100.0% 

Cup 13 92.3% 72.7% 
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Figure 10 shows some of the best predicted rectangles for a marker and a brush.

Figure 10: Test Results showing estimated 

We noted that the results from our robotic experiments were better than the results from o
dataset.  When we visually inspected our dataset, we realized that for many objects, the 
image tends to be overexposed, thus losing important image details.  Hence, 
had a hard time trying to identify good grasping rectan
experiments, we were careful to adjust the camera's exposure settings to ensure that the 
objects were correctly exposed, and this led to significantly better results.  

During the grasping phase, for simplicity, we assume 
object along the vector parallel to the camera's viewpoint would be adequate.  This 
assumption turned out to be inadequate for some cases where the object i
best approach vector would thus be vertically
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Misc 7 85.7% 66.7% 

Plate 2 100.0% 100.0% 

 23 95.7% 73.9% 

Tongs 4 100.0% 25.0% 

 5 80.0% 100.0% 

Grand Total 58 89.7% 73.1% 

The results on novel objects (objects that the algorithm has never encountered before

Table 5: Results on novel objects 

Object Type # instances Prediction Grasping 

 3 100.0% 100.0% 

Misc 1 100.0% 100.0% 

Measuring Tape 2 50.0% 0.0% 

Rack 1 100.0% 0.0% 

Pencil case 2 50.0% 0.0% 

Foam 3 100.0% 100.0% 

Shoe 5 100.0% 40.0% 

Duster 2 100.0% 50.0% 

Pump 1 100.0% 100.0% 

Grand Total 20 90.0% 61.1% 

Figure 10 shows some of the best predicted rectangles for a marker and a brush.
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the reason for the failure, we placed these flat objects on a piece of foam which allows the 
gripper to push into the foam, yielding a greater inset into the object without hitting the 
ground plane.  With the foam, the gripper had a markedly higher success rate, affirming our 
conjecture.   

From the results on novel objects, our algorithm seems promising in identifying grasping 
rectangles for a wide variety of objects.  We have shown that our algorithm, trained on a 
small set of objects from various classes, can produce results that generalize well to a wider 
range of objects. 

 

7 Conclusion and future work 

We have implemented an algorithm capable of identifying suitable grasping rectangles using 
stereo image and point cloud information.  The combination of image and point cloud 
features allows our algorithm to perform significantly better than previous work and the 
results from robotic experiments show that our algorithm produces good results both on the 
trained objects and on novel objects that it has not encountered before. 

We believe that our algorithm has more room for improvement.  From table 2, we can see 
that non-linear features gave the greatest boost in our test accuracy, and hence, we could try 
to design more of such non-linear features.  Another possibility is to use a non-linear kernel 
in SVM-rank, but this drastically increases the time needed to train the model as SVM-rank 
uses a specialized algorithm for training linear models. 

We could also design simple heuristics to come up with better approach vectors for grasping 
objects in order to resolve the issue mentioned above.  One way would be to use random 
sample consensus (RANSAC) [9] to find the ground plane in the point cloud, and use that to 
calculate the height of the object from the ground plane.  If the height is low, it would be 
better to approach the object along the negative z-axis instead of the camera's viewpoint.  
We expect that implementing this simple heuristic would significantly increase our success 
rate for grasping. 
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