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1 Introduction

1.1 Problem

In order for a robot to carry out meaningful tasks in diverse and complex environments, it needs the
ability to autonomously discover salient parts of its environment that are relevant for successfully
carrying out its tasks. One subset of such tasks includes those that involve manipulation of everyday
objects. Autonomously acquiring a task relevant model of a previously unseen object would expand
the set objects that a robot can effectively (correctly and efficiently) manipulate. Such a model needs
to be as simple as possible to decrease the overhead of acquiring it and to increase the likelihood of
it transferring to similar objects. A hypothesis is that the kinematics model of an object is enough
to allow the robot to effectively use this object. For this project, we will assume that we have some
robot that can effectively manipulate a previously unseen object to obtain sufficient information from
its sensors to infer a complete kinematics model of the object. Furthermore, the only sensor that we
will use is a stereo camera. Thus, our goal becomes to discover the kinematics model of previously
unseen objects using only vision.

1.2 Related Work

[3] [2] propose a non-probabilistic framework for discovering the kinematics model of a previously
unseen planar object using very little assumptions about the object or the environment it is embedded
in. The method can deal with both revolute and prismatic joints, is robust against different object
shapes and textures variation as well as environment conditions. There are several limitations in this
work. First, the method can only deal with planar objects. Second, it does not attempt to model the
uncertainly in the physical dimensions of the links or the relative locations of the joints.

On the other hand, [1] proposes a probabilistic framework for discovering the kinematics model of
arbitrary objects in motion from 2D or 3D time series of features. Their kinematics model cannot
account for prismatic joints however. Furthermore, an object in motion captured from a camera
should roughly remain in the same plane; this is restriction to planar objects again. However, an
advantage over the previously cited work is that uncertainty is explicitly modeled.

2 Algorithm

2.1 Previous Algorithm

Our first attempt fit a mixture of Gaussians to each frame independently, then used SIFT keypoints
to match them across frames. Joint locations were inferred using the intersection of the Gaussians’
principal axes. This algorithm was effective at determining whether an object was jointed or rigid,
but had significant error in segmenting objects into links and in determining their joint locations.
Results from this algorithm can be seen in fig. 1, and a case where it clearly failed can be seen in
fig. 2.
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Figure 1: Results from previous algorithm. Links along with the principal axes of the corresponding
Gaussians (white) and predicted joint locations (green) for series of frames of a jointed object (top)
and rigid object (bottom)
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Figure 2: Object for which the previous algorithm did not perform compute link membership cor-
rectly, leading to significant error in predicting joint location

2.2 Overview of New Algorithm

Our new algorithms is derived from constructing a maximum likelihood solution. Our algorithm
makes two assumptions. First, each link of an object can be represented by multiple Gaussians.
Second, a link in a rigid object can only undergo a translation and rotation transformation from
frame to frame. These assumptions naturally lead to defining a joint likelihood function across all
frames consisting of a mixture of Gaussians for each frame with the following additional constraints:
the covariance matrix and mean for each Gaussian in each frame are rotated and translated versions

The algorithm, as a whole, progresses as follows:

1. Compute SIFT matches between all pairs of distinct frames.

2. Take the base frame as the frame with the largest total number of SIFT matches with other frames.
3. Fit a mixture of K Gaussians to the base frame using E-M

4. Make an initial estimate of R% and T"! for all frames ¢ and Gaussians j by using the SIFT keypoints
in frame ¢ which match the SIFT keypoints for Gaussian j in the base frame.

5. Until convergence:

5.1. Update p, 3, and ¢ simultaneously as per the maximization above

5.2. Update R and T simultaneously as per the maximization above

6. Infer joint presence and locations

Figure 3: Overview of the algorithm



of the covariance matrix and mean of some corresponding Gaussian in some base frame. The base
frame is defined as the frame with the maximum number of SIFT keypoint matchings with the
remaining frames. Since it is difficult to simultaneously maximize the likelihood function for all
parameters, we iteratively maximize over the covariances and means of the Gaussians, and then
maximize over the rotation and translation between the base frame and the remaining framesframes
while holding all other parameters fixed in both cases. Once we have converged to a satisfactory
model of the object’s links, we compute the joint locations of the object and determing whether it is
a rotational or fixed joint. The details of the algorithm are specified in figure 3.

Overall, our new algorithm improves over our previous one in two areas: First, our previous algo-
rithm assumed that any link can be approximated using one Gaussian. In contrast, our new algorithm
assumes that any link can be fitted by multiple Gaussians which is a intuitively plausible. Second,
our previous algorithm models the links in each frame independently of the other frames. Our new
algorithm uses all the frames simultaneously to determine the kinematics structure of the object
while adding the constraint that across frames links can only undergo translations and rotations
transformations.

2.3 Likelihood Function and Paremeter Updates

Assume we have N frames and K Gaussians per frame. We also have data points 2,4 € 1,...,n4,t €

., N (where n, is the total number of data points in frame ¢). These data points correspond to
foreground points in the image. The data itself is of dimension m. Finally, let A} denote a variable
A which belongs to the /th Gaussian in frame u.

Here are the parameters of the likelihood function:

Means of each of the K Gaussians: p = (p1, ti2, -+, fix)
covariance matrices of each of the K Gaussians: ¥ = (X1,%,,...,Xk)
Membership probabilities in each of the K Gaussians:
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Rotations between each of the K Gaussians in the base the frame and the coresponding Gaussians in
the remaining frames:
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Translatlons between each of the K Gaussians in the base the frame and the coresponding Gaussians
in the remaining frames:
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The likelihood function:

N mg
L, %, 6, R, T) = [[ [ [ pah, vis 1. 20 6, R, T)
t=14i=1
N my
=TI (=t .20 6, R T)p(yls 1, S, 6, R, T)

t=1i=1



The log-likelihood function:
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The likelihood function is maximized over u, 35, and ¢ by:
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Maximizing over R is more difficult, and we have not been able to find a closed-form solution. This
difficulty is exacerbated by the fact that R, as a rotation matrix, has a few additional constraints on
its form. Currently, we maximize over R; by finding the covariance of the points in frame ¢ assigned
to Gaussian j, then finding the rotation between the principal axis of 3J; and this new covariance.
While this is not a direct maximization from the equations, it has proven highly effective in practice.

2.4 [Initialization

To obtain an intial estimate of Gaussian parameters, we fit Gaussians to the foreground points in the
base frame ¢ using standard E-M. Then, for each Gaussian k, we obtain a vector of SIFT keypoints
Py.. Then, for each other frame j, we compute the SIFT matches from these keypoints, giving us

two vectors, P,i’j and P,g ot corresponding to the points in frame ¢ whcih match the points in frame j
and vice-versa, ordered so that the point at each position in P, is a SIFT match for the point at the
corresponding position in P;’*. We want to initialize 7} and R;, such that:

P = RU(PYT — ) + T
However, since we will typically have more than two keypoint matches per Gaussian, this is an

overconstrained system and we must resort to least-squares.Taking N as the length of P}, T,z is
simply computed in this manner by:
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Ri is more difficult to compute. An estimate can be made by:

Rl = ()P ()R

However, we have no guarantee that R;“ will follow the constraints of a rotation matrix and thus

make a least-squares estimate to the closest rotation matrix by:

Rj, = R (BT R) ™

This guarantees Ri to be orthogonal, though we must also ensure that it is a special orthogonal
matrix, ie that its determinant is 1. This is simply done by multiplying each value in the first column
by -1 if the determinant of Ry, is -1.

2.5 Inferring Joint Locations

Once the algorithm has converged, we can compute the location of a joint between two links, denoted
as links j and k using frames 7 and 7 + 1 by observing the translation and rotation undergone by link
k relative to link j between these frames.

First, we compute R1 and R2, which are the rotations made by link £ relative to link j in frames ¢ and
1 + 1, respectively. We also compute T1 and T2, which are the translations made by link k relative
to link j in the coordinate frame defined by link j’s rotation, for frames ¢ and ¢ + 1, respectively.

R1 = (R)" x Rj,

R2 = (RHT « R
T1=(R)" « (T} - T))

T2 = (R« (1 — T,

Once these have been computed, we can compute the relative rotation and translation made by link
k with respect to link 5 between frames ¢ and ¢ + 1 simply, as follows:

Ryl = R1" « R2
Tre=T2-T1

We can then apply these to compute the joint location P, relative to the mean for link k, as:

J = R; * (R) T+ (1 - Rrelr1 * Trel

We compute J for each pair of sequential frames. We discard any values with very large L2 norms,
since these correspond to motions for which links j and & appear to be rigid with respect to each
other. If all values are discarded in this way, we say that links j and k are components of a rigid
body.
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Figure 4: Mixtures of Gaussians fit to a series of images of a pliers by our new algorithm. Top row
shows the distributions themselves as contours, bottom shows the assignment of points to links.

If there are some frames in which the relative motion of links j and %k cannot be explained as a rigid
body motion, we know that either there exists a joint between them or they are independent. If all
computed joint locations are relatively close to each other (all pairwise L2 distances are within a
certain threshold), we say that there exists a joint between links j and k, at a location equal to the
average value of J for these frames. If there is some pair of computed joint locations whose L2
distance exceeds this threshold, we say that links j and k are independent.

Finally, to compute the actual location, J', of a joint between links j and k at relative position J in
frame 7:

J =RixJ+u+ T}

3 Results

This new algorithm has proven very effective in consistently fitting Gaussians to the same link across
frames when the number of Gaussians is no more than three, as can be seen in fig. 4. On the other
hand, if the number of Gaussians is greater than three, as can be seen in fig. 8, then a link might
be labeled by different Gaussians from frame to frame. This is primarly due to the fact that we do
not incorporate SIFT keypoints in the likelihood function therefore, there is no visual notion of link
similitude . On the other hand, given accurate fitting of the links, we can consistenly infer the joint
locations accurately as can be seen in fig. 6.

3.1 Discussion

It should be noted that we fit at most three Gaussians to any of the objects in fig. 5 when some
would be better modeled by more. This is a limiation imposed by our use of SIFT keypoints for
initialization. Since these keypoints are sparse, a small area such as the tips of a pair of pliers may not
contain any keypoints, making initialization difficult. We are looking into alternative initialization
methods which either remove our dependence on SIFT keypoints or augment them. The other reason
disallowing us from fitting more than three Gaussians is that we don’t incorporate SIFT keypoints
into our likelihood function. This limits in a fundamental way because we do not have a visual
feature that determines link similitude. This leads to link assignments changing as can be seen in
fig. 8.

However, our algorithm is very effective in choosing correct, consistent assignments of foreground
points to links for larger links and as long as we don’t use more than three Gaussians. This allows it
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Figure 5: Discovered links (top) and joint locations (bottom) for five objects.
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[ Object [ Joint Iocation error (pixels) |

1 16.6110
2 9.3753
3 14.8097
4 12.0953
5 11.4075

Figure 6: Error in inferred joint location for objects in fig. 5

to infer joint locations with a high degree of accuracy, which would be increased for a larger dataset
(the results shown used only 5-10 frames each). It is also able to correctly infer whether or not a
joint exists between a pair of links, properly reporting that the “links” discovered for the object in 7
represent a single rigid body.



Figure 7: Object (left) and possible link structure (right) for which our algorithm correctly deter-
mines a rigid connection between the two inferred links
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Figure 8: Mixtures of four Gaussians fit to a series of images of a pliers by our new algorithm. Top
row shows the distributions themselves as contours, bottom shows the assignment of points to links.

4 Future work

In our future work, we plan on making the likelihood function richer by including SIFT keypoints
matching in the likelihood function to bias the algorithm to be consistent with links labeling across
frames. Furtheremore, we plan on relying on more than just SIFT keypoints for initializations. An-
other important milestone is to generalize our work to 3D objects. We plan to do so by incorporating
point clouds into our data.
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