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ABSTRACT 

We describe a link prediction method based on a scalable 

community detection algorithm. It can be used to recommend new 

links in a real world social network with millions of users. Using a 

Hadoop cluster, we test our implementation on a Twitter user 

network containing 40 million users and 1.4 billion connections. 

We show that communities detected can then be used to 

recommend new users to follow for existing users. We describe 

issues in evaluating a link recommendation algorithm. Finally we 

discuss the case of recommending influential users using a linear 

support vector machine classifier. 
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1. INTRODUCTION 

    Over the last few years, online social networks have gained 

immense popularity. The ability of being able to recommend new 

users of interests in such networks is extremely useful. Since the 

more friends (and in case of twitter, interesting users) a person has 

(or follows), more likely he is to return to the website. This in turn 

leads to higher page views and consequently higher revenues.  

    A naïve approach for predicting friends would be to perform a 

two level breadth first search starting from the users and to 

recommend users which are found in the search and are not 

currently connected. However, since each user on an average is 

connected to 100 other users (in our dataset), doing a breadth first 

search for each of the 40 million users is computationally 

prohibitive. However, if we can find a set of users tightly 

connected to each other, then we would be able to make 

predictions for the entire group as a whole rather than for each 

individual user, making the process computationally better.  

    The process of detecting clusters in networks is called as 

Community Detection.  A community, also sometimes referred as 

a cluster or a module, is defined as set of nodes in the networks 

with more edges between the members of the set as compared to 

the rest of the network. Numerous algorithms exist for detecting 

the community structure. Most of these algorithms rely on 

optimization of modularity, a quantity that measures goodness of 

community structure. In this work we utilize a different kind of 

algorithm, called as Label Propagation algorithm, first proposed 

by Raghavan et. al. in 2007 [6].  Label Propagation algorithm is 

extremely scalable, has a near linear time performance and does 

not require any prior information about the community structure 

[6, 5].  

    To the best of our knowledge, there hasn’t been any work 

describing Community Detection or link prediction in networks 

with more than 10 million nodes. The closest work we found 

focused on determining 'betweenness centrality' for network of 40 

million1 Twitter users, using a 128 processor Cray XMT [2, 3]. 

We used the same dataset for testing our implementation [3].  

In following sections we describe the community detection 

algorithm followed by link prediction methodology using the 

detected communities. We then describe the dataset used and 

results obtained. We also discuss results obtained using 

classification algorithms for predicting new followers for 

influential users.  Finally we describe a method based on creating 

community specific singular value decomposition based models 

for link prediction. 

2. Community Detection and Link Prediction 

2.1 Label Propagation Algorithm 

     All nodes are initialized with a unique label and at every 

iteration each node assumes a label used most frequently in its 

neighborhood. Over iterations, sets of nodes strongly connected to 

each other, end up getting the same label. All nodes having the 

same label are considered part of the same community [6]. 

 More accurately the algorithm is defined as: 

1. Assign a unique label to each node in the network. For a 

given node x, let its label at time 0 is Cx(0) = x. 

2. Set t = 1. 

3. For each node x in the network, find the most frequently 

occurring label among all the nodes with which x is 

connected to. Ties are broken uniformly and randomly. 

Cx(t) = f( Cx1(t-1), Cx2(t-1),..., Cxk(t-1)). 

 

1 The paper [2] inaccurately reports number of users in dataset from [3] as 61 

Million, 61 Million is highest index (numeric twitter id), and not number of users. 



4. Check for some convergence criterion, if met, stop, else 

set t = t + 1 and go to step 3. 

         Due to randomly broken ties, the algorithm is non 

deterministic in nature.  

2.2 Community Detection using Map Reduce 

     For the purpose of Community Detection, a single iteration 

corresponds to a single map phase. A reduce phase is not 

required. The network in an adjacency list (of the original data 

set) serves as the input which is split across multiple machines. In 

each iteration, the current labels for all nodes are shipped to each 

machine running map process. Thus step 3 in the algorithm 

described above can be parallelized. The map process outputs the 

labels for current iteration.  

 

 

 

2.3 Link Recommendation using communities 

     Once the communities have been detected using the label 

propagation algorithm, the process of recommending new users is 

simple. For each community, we enumerate all users followed by 

the members in the community. This is similar to performing a 

breadth first search for each user in the community, but with only 

one degree of separation instead of two. Since all members of a 

community are tightly connected to each other, there are 

numerous users which occur multiple times.  

    This predicted set of users to be followed is then ranked by the 

frequency of occurrence and top 500 users are selected as a 

prediction for each community. We use the community discovered 

after fourth iteration of label propagation algorithm, since the 

community size is smaller.  

 

 

2.4 Baseline - Breadth First Search 

   The naïve approach to link prediction employed by most of the 

social networking sites is based on breadth first search with at 

most two degrees of separation. The number of common friends 

with a second degree connection can indicate how likely one is to 

connect to them. We apply this methodology for users in test set 

to get a baseline for comparison.   

2.5 Evaluation methodology and recall as 

metric for measuring  

   We use the new set of links formed by the users after a period 

(as on November 2010) as the ground truth to test against. 

Consider a user John Doe, who was following 100 users in our 

network dataset (July 2009), and now is following 20 more users. 

Our goal is then to find how many of those 20 users can be 

predicted by our algorithm. Thus we use recall as the metric of 

choice. For each user in test set, we generate predictions equal to 

twice the number of new users he connected to after a year. The 

ratio of correct predictions to number of users which were 

followed additionally (which is same as recall) is used as a metric.   

3. Recommending followers for influential 

users 

   Since some of the users, such as celebrities, heads of state etc. 

have large following, we can predict whether given a user is likely 

to follow the influential user. This is similar to an unbalanced 

classification task. Consider the user BarackObama: as of Dec 

2010, 6 Million users follow him. Thus we can construct a 

classification problem, where for each user we predict whether he 

is likely to follow BarackObama or not. This is feasible since 

large numbers of users are following a single user and thus this 

method is useful only for users who have at least hundred 

thousand followers.  

We also account for the difference in class distributions while 

making the predictions. For this task, the features for each user 

would be other influential users he is following. We define 

influential users as ones with more than 1000 followers. This 

leads to large number of sparse features and consequently, 

SVMperf [7] classifier is used for classification.  

4. S.V.D. based prediction 

Rather than simply calculating the frequently followed users by all 

users in the community, we can create a simple Singular Value 

Decomposition based model for each community. For a given 

community we represent the follower information for all users in 

the community using a sparse matrix (A). Each row in the sparse 



matrix corresponds to a user in the community, while each 

column corresponds to a user being followed by at least one 

member of the community. When, say, a user1 is following user2 

then  

A[user1, user2] = 1 

The matrix A is then approximated by truncated S.V.D.  

A = U × S × V 

Using the principal components we calculate A’ an approximation 

of A. 

U × S × V = A’ 

A’ serves as a basis of prediction. If A’[user1, user2] is higher 

than what one would expect at random, then it means that  

user1 user2 (user1 is following user2). We can use this property 

to predict new users to follow for a given user. 

In order to test above hypothesis, while constructing the sparse 

matrix A, we leave out a small number of edges, i.e., we set  

A[user1,user2] = 0. 

These edges then belong to test set; we also create an equal 

number of random edges. Finally after performing S.V.D. we 

predict values in A’ for all edges in test set, and determine 

whether the predicted value can discriminate between an original 

and a randomly created edge.  

5. Dataset & Experimental Setting 

    We use Twitter's network dataset collected by Kwak et. al [3]. 

The network contains 40 million users, with 1.4 billion directed 

edges between them. This network was collected in June 2009 and 

contains nearly all users present at the time [3]. Since twitter 

contains few users who have large number of followers, we create 

a second network which contains only users who have less than 

1000 followers (in degree). We believe this network is better at 

capturing the underlying social network. Also the edge 

directionality is maintained while performing calculations, i.e. to 

assign a label to a user, only the labels of users who he/she is 

following are taken into account. 

    To generate the test dataset, we collected the current follower 

information for 2000 users, each of have started following at least 

3 new users (who had accounts prior to June 2009 and exist in our 

dataset).  

    We use a 55 node Hadoop cluster [8] for performing 

community detection as well as for generating ranked list of users 

to be followed for each community. Each machine in the cluster is 

a 2.66 GHz Quad Core Intel Xeon with 16 GB Memory. 

    For performing classification for influential users, we create a 

training set of 100 thousand users, validation set of another 100 

thousand users and test set of 500 thousand users. We vary the 

ratio of positive instances (users who are following) to negative 

instances (users who are not following) and parameter C. We also 

take precaution of removing the influential user who is being 

predicted from the feature set. 

6. Community Detection Results  

A single iteration for complete network took only 7 minutes, 

which includes time taken for shipping the labels to all nodes in 

the cluster. Due to limitation of the space provided here, all 

results as well as the code used in the paper have been made 

available on the supporting website [1]. 

6.1 Results for the complete network 

Due to existence of users with more than a million followers, after 

the first iteration a large proportion of the users following an 

influential user end up in the community of the influential user. 

We found by end of 10th iteration a giant community of 31 million 

users having “MrsKutcher” as label/user. There were few other 

communities, e.g. “buzztter” (a Japanese user) and “marcelotas” 

(a Brazilian journalist). Out of 556,279 communities detected 

only 1065 contained more than thousand users. This chaotic 

behavior of community detection algorithm supports the need for 

removal of influential users prior to community detection.   

 

Label / User Size Related Nationality 

chrishasboobs 10882151 United States of America 

monovolume 1139344 Brazil 

riskaydrama 1037555 United States of America 

bcb8 305996 India 

33 137553 Japan 

Table 1. Top 5 Communities after 15th iteration for the network 

without influential users 

6.2 Results for network without influential 

users 

For network without influential users, we find that formation of 

mega communities (communities with million+ users) is 

significantly delayed, they occur after ~10 iterations. Such mega 

communities are byproduct of the epidemic nature of the 

algorithm. Several modifications have been proposed to overcome 

this limitation [5]. 

   We find that the mega communities tend to represent distinct 

nationalities and are thus actually useful. As illustrated by Table 

1, we find a large community with label “chrishasboobs” (an 

abandoned account of an internet celebrity).  After randomly 

selecting ~100 users and inspecting their profiles, we found that 

this community contains mostly American users. The second 

largest community is similarly found to contain users primarily 

from Brazil. The third community is also found to contain mostly 

American users. The next two communities contain Indian and 

Japanese users, other countries such as Netherlands, France, 

Portugal, etc. also occur in distinct communities. Since the 

algorithm is stochastic in nature, we compared results across 

multiple runs and found similar distribution of users in difference 

communities representing nationalities. 

    For lower number of iterations, e.g. after 7th iteration, we get 

communities which represent special interests, employers, 



universities and geographical locations such as cities. By looking 

for membership of few select users we could find communities of 

employees of a tech company, users associated with W3C and 

Semantic Web, users who do research or are associated with MIT 

Media Lab. 

You further explore these results in [1]. 

7. Results for Link prediction using 

Community Detection 

 

Method Recall 

Baseline 4.7% 

1st  iteration 2.5% 

4th  iteration 4.7% 

5th  iteration 5.6% 

Table 2. Recall for Link Prediction 

The above table shows the performance of the algorithm. Note 

that the low recall values are due to hard nature of the problem. 

Consider that 1000 users out of 2000 users in the test set doubled 

their social network. Thus it is extremely difficult to predict who 

they started following using information about previously 

followed users.  

   Since the baseline results are also lower, it shows that the large 

number of users who were added later lie outside the usual two 

degrees of separation. Such connections are extremely hard to 

predict, using the network information alone. In many cases we 

find that the new connections lie outside the area of interest of the 

community, i.e., a user might be part of a community involving 

his university friends, however, the new users which he started 

following would belong to some special interest group or say may 

be colleagues at the company he is employed. These changes are 

extremely hard to predict. 

8. Results for follower prediction for 

influential users  

Validation Set Results 

C Accuracy Precision Recall ROCArea 

1 72.83 71.39 76.20 80.20 

10 73.56 71.08 79.43 79.79 

100 71.61 70.44 81.35 78.77 

Size of negative set = Size of positive set. 

 

C Accuracy Precision Recall ROCArea 

1 84.59 84.01 28.35 83.63 

10 85.18 82.29 33.02 84.15 

100 85.32 80.48 35.11 83.49 

Size of negative set = 4 * Size of positive set. 

 

C Accuracy Precision Recall ROCArea 

1 90.21 88.62 13.68 84.19 

10 90.66 83.78 19.81 84.68 

100 90.78 80.54 22.45 83.64 

Size of negative set = 8 * Size of positive set. 

Table 3: Variation of results with C and size of negative set 

We considered users with more than 500 thousand followers. 

Above results are for Ellen Degeneres who at present has 5 

million users. We constructed a simple classification problem as 

described earlier. 

   As we can observe from the results on the validation set, the 

recall drops as we increase the proportion of the negative set, but 

at the same time the ROC area increases. For test set, we use 

negative set with size around 8 times the size of the positive set 

(We also find that this is the proportion is the one observed for 

users with highest number of followers. Also, we are still 

investigating the effects of bigger size of Negative set).  

Keeping the size of Negative Set 8 times the size of Positive Set 

and keeping the value of C as 10, we evaluated the results on the 

test set:  

Accuracy Precision Recall ROCArea 

90.65 83.60 19.75 84.81 

Table 4. Results on Test Set for optimal value of C and Size of 

Negative set a chosen by validation set 

Given a user not following an influential user, there are two cases 

possible: 

1. The user knows about the existence of the influential user and 

yet he is not interested in following him. 

2. The user is not aware of existence of the influential user (on 

the social network) and thus he is not following him.  

The second case should appear as a False Positive while 

predicting using above method. Since a false positive would imply 

that the algorithm predicts that the user might be interested, but 

the user is unaware of the presence and thus influential users are 

suitable candidate for recommendations. 

9. Results using S.V.D. based model 

We used a community of 10871 users living in Cleveland, Ohio. 

The size of the sparse matrix created was 10871× 60168 which 

implies that 10871 users were following 60168 users. 

We generated two test sets; in the first test set, for each user who 

is following at least 10 users, we removed one edge and added it 

to test set, and we also created an edge between the same user and 

a randomly selected user from 60168 users. This led to a balanced 

test set containing 7750 edges.  

For the second test set for each user who is following at least 20 

users, we removed one edge and added it to test set, and we also 

created an edge between the same user and a randomly selected 



user from 60168 users. This led to a balanced test set containing 

4712 edges. 

Note that not only the sizes of the two test sets are different, but 

also in first test set (the larger one), we are even removing an edge 

from each user having just 10 edges. Thus this set is considerably 

harder to predict. 

We varied the number of principal components starting from 1 

and then in increments of 25 upto 125. We measured both 

ROCArea well as Classification error. 

The results are described in the table below: 

Test set of 4712 edges 

Number of Principal 

Components 
ROCArea Classification 

error 

1 70% 30% 

25 83% 21% 

50 83% 20% 

75 82% 20% 

100 80% 22% 

125 79% 22% 
Table 5. Variation of AUC and error by number of principal 

components for test set of 4712 edges 

Test set of 7750 edges 

Number of Principal 

Components 
ROCArea Classification 

error 

1 70% 34% 

25 79% 24% 

50 79% 24% 

75 78% 24% 

100 78% 24% 

125 77% 24% 
Table 6. Variation of AUC and error by number of principal 

components for test set of 7750 edges 

    As observed from above two tables, the S.V.D. model is 

capable of distinguishing between a randomly created edge and a 

real edge. Thus it might be possible to use such models for 

recommending new edges and thus in turn, users to follow. We 

also find that as number of principal components increase there is 

increase in the discriminative capability as measure by both ROC 

Area as well the classification error. However adding more than 

50 principal components lead to decrease in the discriminative 

capability. This may be due to the fact that it is now over fitting 

the matrix and the calculated A’ is now closer to A rather than 

being an approximation. It might also be an effect of the algorithm 

used (Lanczos) used to perform the S.V.D. and the 50+ principal 

components that contain mostly noise. However, by using just 25 

principal components we could achieve ROCArea of 83% and 

79% for the smaller and the larger test sets respectively.  

10. Discussion & Conclusion 

In this project we evaluated three different approaches for 

performing link prediction/recommendation for a real world large 

scale online social network. Except for the unbalanced 

classification model based approach which is suitable only for 

Twitter like networks where there are extremely influential users, 

the other two approaches are scalable and applicable for any 

social network. The approach using only communities and 

enumeration of all users followed by members of the community 

is shown to be useful considering low computational costs 

involved. However the S.V.D. based model is also shown to be 

useful. In future we hope to compare the two approaches using 

similar sets of users. 
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