
Scalable Link Prediction in Online Social Networks

Akshay Bhat, Pracheer Gupta

Cornell University

{aub3, pg298}@cornell.edu,

ABSTRACT

We describe a link prediction method based on a scalable

community detection algorithm. It can be used to recommend new

links in a real world social network with millions of users. Using a

Hadoop cluster, we test our implementation on a Twitter user

network containing 40 million users and 1.4 billion connections.

We show that communities detected can then be used to

recommend new users to follow for existing users. We describe

issues in evaluating a link recommendation algorithm. Finally we

discuss the case of recommending influential users using a linear

support vector machine classifier.

Categories and Subject Descriptors H.2.8 Database

Management: Database applications – Data mining

General Terms

Measurement

Keywords

Link Prediction, Community Structure, Community Detection,

Label Propagation

1. INTRODUCTION

 Over the last few years, online social networks have gained

immense popularity. The ability of being able to recommend new

users of interests in such networks is extremely useful. Since the

more friends (and in case of twitter, interesting users) a person has

(or follows), more likely he is to return to the website. This in turn

leads to higher page views and consequently higher revenues.

 A naïve approach for predicting friends would be to perform a

two level breadth first search starting from the users and to

recommend users which are found in the search and are not

currently connected. However, since each user on an average is

connected to 100 other users (in our dataset), doing a breadth first

search for each of the 40 million users is computationally

prohibitive. However, if we can find a set of users tightly

connected to each other, then we would be able to make

predictions for the entire group as a whole rather than for each

individual user, making the process computationally better.

 The process of detecting clusters in networks is called as

Community Detection. A community, also sometimes referred as

a cluster or a module, is defined as set of nodes in the networks

with more edges between the members of the set as compared to

the rest of the network. Numerous algorithms exist for detecting

the community structure. Most of these algorithms rely on

optimization of modularity, a quantity that measures goodness of

community structure. In this work we utilize a different kind of

algorithm, called as Label Propagation algorithm, first proposed

by Raghavan et. al. in 2007 [6]. Label Propagation algorithm is

extremely scalable, has a near linear time performance and does

not require any prior information about the community structure

[6, 5].

 To the best of our knowledge, there hasn’t been any work

describing Community Detection or link prediction in networks

with more than 10 million nodes. The closest work we found

focused on determining 'betweenness centrality' for network of 40

million1 Twitter users, using a 128 processor Cray XMT [2, 3].

We used the same dataset for testing our implementation [3].

In following sections we describe the community detection

algorithm followed by link prediction methodology using the

detected communities. We then describe the dataset used and

results obtained. We also discuss results obtained using

classification algorithms for predicting new followers for

influential users. Finally we describe a method based on creating

community specific singular value decomposition based models

for link prediction.

2. Community Detection and Link Prediction

2.1 Label Propagation Algorithm

 All nodes are initialized with a unique label and at every

iteration each node assumes a label used most frequently in its

neighborhood. Over iterations, sets of nodes strongly connected to

each other, end up getting the same label. All nodes having the

same label are considered part of the same community [6].

 More accurately the algorithm is defined as:

1. Assign a unique label to each node in the network. For a

given node x, let its label at time 0 is Cx(0) = x.

2. Set t = 1.

3. For each node x in the network, find the most frequently

occurring label among all the nodes with which x is

connected to. Ties are broken uniformly and randomly.

Cx(t) = f(Cx1(t-1), Cx2(t-1),..., Cxk(t-1)).

1 The paper [2] inaccurately reports number of users in dataset from [3] as 61

Million, 61 Million is highest index (numeric twitter id), and not number of users.

4. Check for some convergence criterion, if met, stop, else

set t = t + 1 and go to step 3.

 Due to randomly broken ties, the algorithm is non

deterministic in nature.

2.2 Community Detection using Map Reduce

 For the purpose of Community Detection, a single iteration

corresponds to a single map phase. A reduce phase is not

required. The network in an adjacency list (of the original data

set) serves as the input which is split across multiple machines. In

each iteration, the current labels for all nodes are shipped to each

machine running map process. Thus step 3 in the algorithm

described above can be parallelized. The map process outputs the

labels for current iteration.

2.3 Link Recommendation using communities

 Once the communities have been detected using the label

propagation algorithm, the process of recommending new users is

simple. For each community, we enumerate all users followed by

the members in the community. This is similar to performing a

breadth first search for each user in the community, but with only

one degree of separation instead of two. Since all members of a

community are tightly connected to each other, there are

numerous users which occur multiple times.

 This predicted set of users to be followed is then ranked by the

frequency of occurrence and top 500 users are selected as a

prediction for each community. We use the community discovered

after fourth iteration of label propagation algorithm, since the

community size is smaller.

2.4 Baseline - Breadth First Search

 The naïve approach to link prediction employed by most of the

social networking sites is based on breadth first search with at

most two degrees of separation. The number of common friends

with a second degree connection can indicate how likely one is to

connect to them. We apply this methodology for users in test set

to get a baseline for comparison.

2.5 Evaluation methodology and recall as

metric for measuring

 We use the new set of links formed by the users after a period

(as on November 2010) as the ground truth to test against.

Consider a user John Doe, who was following 100 users in our

network dataset (July 2009), and now is following 20 more users.

Our goal is then to find how many of those 20 users can be

predicted by our algorithm. Thus we use recall as the metric of

choice. For each user in test set, we generate predictions equal to

twice the number of new users he connected to after a year. The

ratio of correct predictions to number of users which were

followed additionally (which is same as recall) is used as a metric.

3. Recommending followers for influential

users

 Since some of the users, such as celebrities, heads of state etc.

have large following, we can predict whether given a user is likely

to follow the influential user. This is similar to an unbalanced

classification task. Consider the user BarackObama: as of Dec

2010, 6 Million users follow him. Thus we can construct a

classification problem, where for each user we predict whether he

is likely to follow BarackObama or not. This is feasible since

large numbers of users are following a single user and thus this

method is useful only for users who have at least hundred

thousand followers.

We also account for the difference in class distributions while

making the predictions. For this task, the features for each user

would be other influential users he is following. We define

influential users as ones with more than 1000 followers. This

leads to large number of sparse features and consequently,

SVMperf [7] classifier is used for classification.

4. S.V.D. based prediction

Rather than simply calculating the frequently followed users by all

users in the community, we can create a simple Singular Value

Decomposition based model for each community. For a given

community we represent the follower information for all users in

the community using a sparse matrix (A). Each row in the sparse

matrix corresponds to a user in the community, while each

column corresponds to a user being followed by at least one

member of the community. When, say, a user1 is following user2

then

A[user1, user2] = 1

The matrix A is then approximated by truncated S.V.D.

A = U × S × V

Using the principal components we calculate A’ an approximation

of A.

U × S × V = A’

A’ serves as a basis of prediction. If A’[user1, user2] is higher

than what one would expect at random, then it means that

user1 user2 (user1 is following user2). We can use this property

to predict new users to follow for a given user.

In order to test above hypothesis, while constructing the sparse

matrix A, we leave out a small number of edges, i.e., we set

A[user1,user2] = 0.

These edges then belong to test set; we also create an equal

number of random edges. Finally after performing S.V.D. we

predict values in A’ for all edges in test set, and determine

whether the predicted value can discriminate between an original

and a randomly created edge.

5. Dataset & Experimental Setting

 We use Twitter's network dataset collected by Kwak et. al [3].

The network contains 40 million users, with 1.4 billion directed

edges between them. This network was collected in June 2009 and

contains nearly all users present at the time [3]. Since twitter

contains few users who have large number of followers, we create

a second network which contains only users who have less than

1000 followers (in degree). We believe this network is better at

capturing the underlying social network. Also the edge

directionality is maintained while performing calculations, i.e. to

assign a label to a user, only the labels of users who he/she is

following are taken into account.

 To generate the test dataset, we collected the current follower

information for 2000 users, each of have started following at least

3 new users (who had accounts prior to June 2009 and exist in our

dataset).

 We use a 55 node Hadoop cluster [8] for performing

community detection as well as for generating ranked list of users

to be followed for each community. Each machine in the cluster is

a 2.66 GHz Quad Core Intel Xeon with 16 GB Memory.

 For performing classification for influential users, we create a

training set of 100 thousand users, validation set of another 100

thousand users and test set of 500 thousand users. We vary the

ratio of positive instances (users who are following) to negative

instances (users who are not following) and parameter C. We also

take precaution of removing the influential user who is being

predicted from the feature set.

6. Community Detection Results

A single iteration for complete network took only 7 minutes,

which includes time taken for shipping the labels to all nodes in

the cluster. Due to limitation of the space provided here, all

results as well as the code used in the paper have been made

available on the supporting website [1].

6.1 Results for the complete network

Due to existence of users with more than a million followers, after

the first iteration a large proportion of the users following an

influential user end up in the community of the influential user.

We found by end of 10th iteration a giant community of 31 million

users having “MrsKutcher” as label/user. There were few other

communities, e.g. “buzztter” (a Japanese user) and “marcelotas”

(a Brazilian journalist). Out of 556,279 communities detected

only 1065 contained more than thousand users. This chaotic

behavior of community detection algorithm supports the need for

removal of influential users prior to community detection.

Label / User Size Related Nationality

chrishasboobs 10882151 United States of America

monovolume 1139344 Brazil

riskaydrama 1037555 United States of America

bcb8 305996 India

33 137553 Japan

Table 1. Top 5 Communities after 15th iteration for the network

without influential users

6.2 Results for network without influential

users

For network without influential users, we find that formation of

mega communities (communities with million+ users) is

significantly delayed, they occur after ~10 iterations. Such mega

communities are byproduct of the epidemic nature of the

algorithm. Several modifications have been proposed to overcome

this limitation [5].

 We find that the mega communities tend to represent distinct

nationalities and are thus actually useful. As illustrated by Table

1, we find a large community with label “chrishasboobs” (an

abandoned account of an internet celebrity). After randomly

selecting ~100 users and inspecting their profiles, we found that

this community contains mostly American users. The second

largest community is similarly found to contain users primarily

from Brazil. The third community is also found to contain mostly

American users. The next two communities contain Indian and

Japanese users, other countries such as Netherlands, France,

Portugal, etc. also occur in distinct communities. Since the

algorithm is stochastic in nature, we compared results across

multiple runs and found similar distribution of users in difference

communities representing nationalities.

 For lower number of iterations, e.g. after 7th iteration, we get

communities which represent special interests, employers,

universities and geographical locations such as cities. By looking

for membership of few select users we could find communities of

employees of a tech company, users associated with W3C and

Semantic Web, users who do research or are associated with MIT

Media Lab.

You further explore these results in [1].

7. Results for Link prediction using

Community Detection

Method Recall

Baseline 4.7%

1st iteration 2.5%

4th iteration 4.7%

5th iteration 5.6%

Table 2. Recall for Link Prediction

The above table shows the performance of the algorithm. Note

that the low recall values are due to hard nature of the problem.

Consider that 1000 users out of 2000 users in the test set doubled

their social network. Thus it is extremely difficult to predict who

they started following using information about previously

followed users.

 Since the baseline results are also lower, it shows that the large

number of users who were added later lie outside the usual two

degrees of separation. Such connections are extremely hard to

predict, using the network information alone. In many cases we

find that the new connections lie outside the area of interest of the

community, i.e., a user might be part of a community involving

his university friends, however, the new users which he started

following would belong to some special interest group or say may

be colleagues at the company he is employed. These changes are

extremely hard to predict.

8. Results for follower prediction for

influential users

Validation Set Results

C Accuracy Precision Recall ROCArea

1 72.83 71.39 76.20 80.20

10 73.56 71.08 79.43 79.79

100 71.61 70.44 81.35 78.77

Size of negative set = Size of positive set.

C Accuracy Precision Recall ROCArea

1 84.59 84.01 28.35 83.63

10 85.18 82.29 33.02 84.15

100 85.32 80.48 35.11 83.49

Size of negative set = 4 * Size of positive set.

C Accuracy Precision Recall ROCArea

1 90.21 88.62 13.68 84.19

10 90.66 83.78 19.81 84.68

100 90.78 80.54 22.45 83.64

Size of negative set = 8 * Size of positive set.

Table 3: Variation of results with C and size of negative set

We considered users with more than 500 thousand followers.

Above results are for Ellen Degeneres who at present has 5

million users. We constructed a simple classification problem as

described earlier.

 As we can observe from the results on the validation set, the

recall drops as we increase the proportion of the negative set, but

at the same time the ROC area increases. For test set, we use

negative set with size around 8 times the size of the positive set

(We also find that this is the proportion is the one observed for

users with highest number of followers. Also, we are still

investigating the effects of bigger size of Negative set).

Keeping the size of Negative Set 8 times the size of Positive Set

and keeping the value of C as 10, we evaluated the results on the

test set:

Accuracy Precision Recall ROCArea

90.65 83.60 19.75 84.81

Table 4. Results on Test Set for optimal value of C and Size of

Negative set a chosen by validation set

Given a user not following an influential user, there are two cases

possible:

1. The user knows about the existence of the influential user and

yet he is not interested in following him.

2. The user is not aware of existence of the influential user (on

the social network) and thus he is not following him.

The second case should appear as a False Positive while

predicting using above method. Since a false positive would imply

that the algorithm predicts that the user might be interested, but

the user is unaware of the presence and thus influential users are

suitable candidate for recommendations.

9. Results using S.V.D. based model

We used a community of 10871 users living in Cleveland, Ohio.

The size of the sparse matrix created was 10871× 60168 which

implies that 10871 users were following 60168 users.

We generated two test sets; in the first test set, for each user who

is following at least 10 users, we removed one edge and added it

to test set, and we also created an edge between the same user and

a randomly selected user from 60168 users. This led to a balanced

test set containing 7750 edges.

For the second test set for each user who is following at least 20

users, we removed one edge and added it to test set, and we also

created an edge between the same user and a randomly selected

user from 60168 users. This led to a balanced test set containing

4712 edges.

Note that not only the sizes of the two test sets are different, but

also in first test set (the larger one), we are even removing an edge

from each user having just 10 edges. Thus this set is considerably

harder to predict.

We varied the number of principal components starting from 1

and then in increments of 25 upto 125. We measured both

ROCArea well as Classification error.

The results are described in the table below:

Test set of 4712 edges

Number of Principal

Components
ROCArea Classification

error

1 70% 30%

25 83% 21%

50 83% 20%

75 82% 20%

100 80% 22%

125 79% 22%
Table 5. Variation of AUC and error by number of principal

components for test set of 4712 edges

Test set of 7750 edges

Number of Principal

Components
ROCArea Classification

error

1 70% 34%

25 79% 24%

50 79% 24%

75 78% 24%

100 78% 24%

125 77% 24%
Table 6. Variation of AUC and error by number of principal

components for test set of 7750 edges

 As observed from above two tables, the S.V.D. model is

capable of distinguishing between a randomly created edge and a

real edge. Thus it might be possible to use such models for

recommending new edges and thus in turn, users to follow. We

also find that as number of principal components increase there is

increase in the discriminative capability as measure by both ROC

Area as well the classification error. However adding more than

50 principal components lead to decrease in the discriminative

capability. This may be due to the fact that it is now over fitting

the matrix and the calculated A’ is now closer to A rather than

being an approximation. It might also be an effect of the algorithm

used (Lanczos) used to perform the S.V.D. and the 50+ principal

components that contain mostly noise. However, by using just 25

principal components we could achieve ROCArea of 83% and

79% for the smaller and the larger test sets respectively.

10. Discussion & Conclusion

In this project we evaluated three different approaches for

performing link prediction/recommendation for a real world large

scale online social network. Except for the unbalanced

classification model based approach which is suitable only for

Twitter like networks where there are extremely influential users,

the other two approaches are scalable and applicable for any

social network. The approach using only communities and

enumeration of all users followed by members of the community

is shown to be useful considering low computational costs

involved. However the S.V.D. based model is also shown to be

useful. In future we hope to compare the two approaches using

similar sets of users.

11. ACKNOWLEDGMENTS

We thank Prof. Ashutosh Saxena, for his guidance and support

during the entire course of the project.

We thank Haewoon Kwak, Changhyun Lee, Hosung Park, Sue

Moon, J. Yang. & Jure Leskovec for providing the dataset used in

this paper.

The cluster used is funded in part by National Science Foundation

grants CNS-0403340, SES-0537606, IIS 0634677, and IIS

0705774.

12. REFERENCES

[1] Supporting Website

http://www.akshaybhat.com/LPMR

[2] D. Ediger, K. Jiang, J. Riedy, D. A. Bader and C. Corley.

Massive Social Network Analysis: Mining Twitter for Social

Good. In ICPP ‘2010Parallel Processing, International

Conference on, pp. 583-593, 2010

[3] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a

social network or a news media?. In WWW '10: Proceedings

of the 19th international conference on World Wide Web,

pages, 591-600.

[4] J. Leskovec, K. J. Lang, and M. Mahoney. 2010. Empirical

comparison of algorithms for network community detection.

In WWW ’10: Proceedings of the 19th international

conference on World Wide Web. pages, 631-640.

[5] I.X.Y. Leung, P. Hui, P. Liò and J. Crowcroft. Towards real-

time community detection in large networks. Physical

Review E, 79:066107, 2009.

[6] U.N. Raghavan, R. Albert and S. Kumara. Near linear time

algorithm to detect community structures in large-scale

networks. Physical Review E, 76:036106, 2007.

[7] http://svmlight.joachims.org/svm_perf.html

[8] http://www.infosci.cornell.edu/hadoop

http://www.akshaybhat.com/LPMR
http://svmlight.joachims.org/svm_perf.html
http://www.infosci.cornell.edu/hadoop

