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Abstract 

 

    We tackle the problem of segmenting an 

image into planes given user input. Using a 

supervised learning approach, we develop an 

algorithm that adjusts the user input towards 

true plane segmentations, under the restriction 

that images have vertical boundary lines. We 

begin by collecting images for the training set 

consisting of hallways, buildings, stairs, rooms, 

etc. Users are then asked to draw dots on the 

image to indicate the locations of the 

intersection between neighboring planes. We 

then apply our supervised learning algorithm to 

predict the true location of the planes. Thus, we 

propose a method to infer the boundaries of 

planes from a single image given user input. 

 

1. Introduction 

 

    There have been considerable efforts recently to 

generate realistic 3D models from single images. 

One approach is to create a surface layout for a 

single image that labels geometric classes of the 

ground and the sky as well as the relative position 

of additional objects [1]. Another common 

approach is to determine boundary lines using 

simple geometric constraints present in indoor and 

outdoor architecture structures. Using the user input 

of labeled parallel or perpendicular edges, a partial 

3D model can be constructed after determining the 

vanishing points and camera calibration [2]. This 

algorithm, however, requires the user to define and 

label the exact edges in order to generate a suitable 

3D model and furthermore, doesn’t take advantage 

of learning techniques to train the algorithm. Our 

proposed algorithm intends to first generate 

thresholds that can fix slightly skewed boundaries 

drawn by the user and then, given an entirely new 

environment, use these thresholds to output more 

accurate divisional boundary lines. 

 

 
Figure 1a. Image of a hallway divided up into a series of 

planes that make up a polygon mesh that can be used 

to construct a 3D model. Figure 1b. Image of the same 

hallway with user input of the plane vertices. 

 

    Obtaining a 3D model from images is a difficult 

task in computer vision. Humans can easily 

envision the 3D structure from a single image using 

a variety of texture, geometric, color and contextual 

cues. One of the basic ways to generate a 3D model 

from a single image is to first break up the image 

into several planes. For example, in Figure 1a the 

color overlay illustrates the boundaries of planes 

that can be used to generate a 3D model. As shown, 

the walls, ceiling, and ground make up the planes of 

the image and this information can be simplified to 

just the corners of the planes. Our goal is to take 

user input in the form of dots that signify the 

vertices of planes and to adjust these vertices as 

necessary. 

(a) (b) 



 

    Users are not perfect at drawing points that define 

the boundaries between different planes such as in 

Figure 1b. The user may not be able to accurately 

determine the plane boundaries, whether from an 

occluding object or simply lack of skill. Another 

source of error is just not inputting the exact 

intended location on the image. Our learning 

algorithm attempts to correct the input by modeling 

the tendency of users’ to input inaccurate points.  

 

    Our approach assumes that an image consists of 

several planes and that the ground is a straight 

horizontal line (ie. the camera was not tilted 

sideways.)  With the second assumption we can 

assert one important dependency in our model; that 

the sides of planes will be vertical. Given this 

relation, our model will attempt to correct vertices 

in the image that have ‘close’ x-coordinates by 

bringing the x-values closer together for a more 

vertical line. How ‘close’ two points have to be will 

be determined from our training data and will act as 

a threshold as to when it is necessary to correct the 

locations of the vertices.  

 

2. Prior Work  

 

    There have been many recent investigations of 

producing a 3D model from a single image. Some 

investigate texture distortion to infer the shape and 

orientation of objects [3] while others attempt 

deduce depth from the image from using relative 

sizes of objects [4] to recognizing properties of the 

structures in the image [5].  

 

    In Saxena, Chung, and Ng [6] and [7] produces 

depth maps using Markov Random Fields. Their 

approach is to use MRF to train two models (a 

jointly Gaussian MRF and Laplacian model) using a 

large training set of images and corresponding true 

depth maps. Our model takes on a similar approach 

to their model in how they capture depth 

relationships between neighboring patches and how 

we will attempt to simulate the relationship between 

neighboring vertices of planes. However, our 

problem focuses more on correcting user input as 

oppose to using features calculated inside the 

image. This presents an interesting problem not 

investigated by many papers: How accurate are 

users in isolating different planes in an image? 

While many can argue that it is easy to create a 

mental 3D model of the image, it is not as easy to 

specifically mark the boundaries of planes (e.g. an 

object occluding part of a boundary). Thus, we will 

investigate using supervised learning techniques 

how much our model needs to adjust user inputs to 

acquire the true vertices o the image. 

 

3. Probabilistic Model  

 

    There can be a wide variety of shapes and 

orientations for the image planes for different 

environments. Thus, the model must be able to 

globally reason the spatial structure of the image by 

modeling the relationship between vertices that 

define the boundaries of the plane, as opposed to 

defining set features over images from many 

environments. It can be inferred that the vertices of 

an image are not entirely independent of one 

another. Vertices that belong to the same plane will 

be highly correlated. For example, given the end of 

a hallway, the back wall will be a rectangular plane. 

Since we have restricted the scope of our problem 

to having the ground be horizontal, then it is much 

more likely that the x-coordinates of the plane’s left 

boundary can construct a straight vertical line. The 

same applies to the x-coordinates of the plane’s 

right boundary. 

 

    In fact, the majority of planes in images with a 

horizontal ground will have vertical edges. We 

cannot infer the same relationship with the y-

coordinates of the vertices because of the geometric 

spatial properties of 3D objects, i.e. vanishing 

points mean the top and bottom boundary lines of 

planes will not necessarily be horizontal. Going 

back to the example of the hallway in Figure 1, 

there will also be planes of side-walls, which will 

have different y-coordinates to represent the plane 

tilted and sticking out in the 2D space. 



 

    The second conjecture the model can make 

relates to the expectation that, while not perfect, the 

user input will be close to the actual divisional 

boundaries. The model should be able to make a 

prediction that is close to the user input.  

 

3.1 Gaussian Model 

    We employ a Gaussian Probabilistic Model 

denoting the probability that y is the desired plane 

boundaries, given a user input d parameterized by 

variances       (1). 

 

             

   
 

     
     

         
 

   
   

 

   

                     
 

     
     

          
 

    
  

 

 

       

        

 Where yi is the i
th

 point of the output, di is 

the i
th

 point of the input, and yix is the x-component 

of that point. Ne(i) is the set of all neighbors of 

point i, where neighbor is defined as within 

neighborThreshold pixels horizontally. 

 

We use a Gaussian distribution to model the 

relationship between the user data points and the 

actual vertices locations. Given a set of M user 

points, the first Gaussian term models the fact that 

we believe the user input di to be close to the actual 

vertex location yi.  

 

    The second Gaussian term involves the x-

coordinates of neighboring output vertices of the 

image. This models the fact that the planes in the 

images have vertical boundary lines. Thus is the 

user draws two points within neighborThreshold 

pixels of each other horizontally we can assume 

they were meant to be drawn perfectly vertically, 

which maximizes that probability term. 

 

3.2 Training the Variance Terms 

    There are two parameters for our model:    and 

  . The first variance term represents how far from 

the true boundary points the users tend to input their 

points. The second variance term represents how far 

from vertical the users tend to place neighboring 

points. These variance terms are computed from the 

training data to maximize the conditional log 

likelihood              . Since the model is 

Gaussian, the maximum log likelihood can be 

solved in closed form.  

 

Using (1) we solve for the closed form of    and    

by setting the derivative of the log-likelihood in 

terms of each variance to zero and solving for each 

variance term respectively (2).  
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3.3 Adjusting User Input 

    Once we have learned the variance terms we can 

then take a user’s input on an image from a new 

environment and find the adjusted output y that 

maximizes the probability in (1). We take the log of 

(1) and then manipulate to achieve quadratic 

programming form (2) to plug into MATLAB’s 

solver. 

 

           
 

 

 
              

 

subject to        . H and c are shown in (4).  

 

    
 

  
    

           

  
        

  
  
  
  

 

Ne is the neighborhood table where the element (i,j) 

is 1 if the point yi is a neighbor of yj, 0 otherwise. 

NumNe is a diagonal MxM matrix with values 



representing the number of neighbors of each point 

yi. See appendix for derivation of (4). 

 

4. Experiments 

 

4.1 Data Collection 

    We used a camera to collect images of 20 

different environments around the campus of 

Cornell ranging from hallways to staircases. For 

each of these environments we took 5 different 

images. We labeled truth points by hand. We then 

acquired 5-7 users input per image and collected the 

locations of the plane vertices. This completes our 

data set of over 500 images, each containing a range 

of 6 to 15 points to indicate the vertices of the 

image. For a given image, we required the user 

inputs to be consistent. In other words, users must 

label the same number of vertices in order for the 

comparison between the user input and the actual 

image output to evaluate correctly. We therefore 

eliminated extraneous points that were not included 

in the actual image output. We used this image 

collection to train our data.  

 

5. Results and Discussion 

 

 
Figure 2a. Shows a user input where the plane 

boundaries are slightly skewed. Figure 2b. shows the 

output of our model which corrects the skewed 

boundaries.  

 

    We tested our model on several new 

environments. Figure 2a shows the original user 

input for an image and Figure 2b illustrates the 

model’s adjusted mapping of the data points. The 

output of our algorithm is visibly more vertically 

aligned.   

 

(a) 

(b) 



 
Figure 3. Finding the Optimal Neighbor Threshold. 

 

    Figure 3 shows the average horizontal distance 

between neighboring points in our test set for both 

user input and our adjusted points. At a 

neighborThreshold of 100 pixels, the users specify 

points with an average of 32.5 pixels of vertical 

alignment error, while our algorithm adjusts that to 

an average of 17.8 pixels of error. This 14.7 pixel 

improvement represents the largest error reduction 

our algorithm can achieve. At this optimal neighbor 

threshold the first variance term         and 

       . Our adjusted points have an average of 

9.7 pixels from truth while the user input has error 

of 5.7 pixels from truth. 

    Our adjustment algorithm does slightly move the 

users’ points farther from the truth points on 

average. The truth points, however, were defined by 

us and may not perfectly define the boundaries of 

the image planes. Thus it is more important that the 

adjusted points are closer to vertical lines as that 

more accurately defines the plan boundaries. Hence, 

our algorithm is successful in adjusting user input to 

create more accurate plane boundaries. 

 

Conclusion 

 

   We have developed an algorithm that adjusts user 

input so that vertices marked in an image are more 

accurately positioned vertically. Therefore, if a user 

skews the plane boundaries, our model will readjust 

the plane boundaries so they are more vertical, 

given the ground is horizontal. Our model was 

given a training set of over 500 images each with a 

series of data points and using this image sets we 

applied a supervised learning technique to 

determine two variance parameters. The first 

variance parameter expresses how far the user tends 

to draw a point from the true vertices of an image. 

The second variance parameter examines how much 

the users tend to skew neighboring vertices so that 

the plane boundary is slanted. Testing our model on 

new environments, we observed that our model 

corrects slanted boundaries by correcting the x-

coordinates of points if they are within a specific 

threshold.  

 

    Using the vertices of the image, a 3D model can 

be constructed by dividing the image into planes 

based on adjusted user inputs and applying a 3D 

modeling algorithm such as [6] and [8]; eliminating 

certain steps such as boundary and edge detection.  

 

   Our model has many exciting potential 

applications. With tablets and touch-screen hand-

held devices becoming more and more popular, our 

model can be integrated with other 3D model 

algorithms to help generate the final 3D output. 

With a touch-screen, the user doesn’t have to 

accurately pinpoint the location of the vertices in 

the image because our algorithm will readjust if 

necessary. Thus, our work has many promising use 

for many other applications in vision. 

 

Appendix 

 

    Derivation for finding the quadratic programming 

form of the Gaussian Probabilistic Model (1).  

 

                   

               
       

 

   
 

 

   

              

       

 
       

 

   
    



 

 
             

   
 

 
                   

   
    

 
 

 
    

 

  
    

           

  
    

  
  
  
      

Where # is a diagonal matrix with values 

corresponding to the total number of neighbors of 

each point. Ne is a neighborhood matrix where cell 

(i,j) index is 1 if the point yi is a neighbor of yj. 

Using (3), we solved for the elements in the 

quadratic problems subject to       where A is 

the negative identify matrix and b is zeros vector of 

size M so that points cannot have negative values.  
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