

Correcting User Guided Image Segmentation

Garrett Bernstein (gsb29)

Karen Ho (ksh33)

Advanced Machine Learning: CS 6780

Abstract

 We tackle the problem of segmenting an

image into planes given user input. Using a

supervised learning approach, we develop an

algorithm that adjusts the user input towards

true plane segmentations, under the restriction

that images have vertical boundary lines. We

begin by collecting images for the training set

consisting of hallways, buildings, stairs, rooms,

etc. Users are then asked to draw dots on the

image to indicate the locations of the

intersection between neighboring planes. We

then apply our supervised learning algorithm to

predict the true location of the planes. Thus, we

propose a method to infer the boundaries of

planes from a single image given user input.

1. Introduction

 There have been considerable efforts recently to

generate realistic 3D models from single images.

One approach is to create a surface layout for a

single image that labels geometric classes of the

ground and the sky as well as the relative position

of additional objects [1]. Another common

approach is to determine boundary lines using

simple geometric constraints present in indoor and

outdoor architecture structures. Using the user input

of labeled parallel or perpendicular edges, a partial

3D model can be constructed after determining the

vanishing points and camera calibration [2]. This

algorithm, however, requires the user to define and

label the exact edges in order to generate a suitable

3D model and furthermore, doesn’t take advantage

of learning techniques to train the algorithm. Our

proposed algorithm intends to first generate

thresholds that can fix slightly skewed boundaries

drawn by the user and then, given an entirely new

environment, use these thresholds to output more

accurate divisional boundary lines.

Figure 1a. Image of a hallway divided up into a series of

planes that make up a polygon mesh that can be used

to construct a 3D model. Figure 1b. Image of the same

hallway with user input of the plane vertices.

 Obtaining a 3D model from images is a difficult

task in computer vision. Humans can easily

envision the 3D structure from a single image using

a variety of texture, geometric, color and contextual

cues. One of the basic ways to generate a 3D model

from a single image is to first break up the image

into several planes. For example, in Figure 1a the

color overlay illustrates the boundaries of planes

that can be used to generate a 3D model. As shown,

the walls, ceiling, and ground make up the planes of

the image and this information can be simplified to

just the corners of the planes. Our goal is to take

user input in the form of dots that signify the

vertices of planes and to adjust these vertices as

necessary.

(a) (b)

 Users are not perfect at drawing points that define

the boundaries between different planes such as in

Figure 1b. The user may not be able to accurately

determine the plane boundaries, whether from an

occluding object or simply lack of skill. Another

source of error is just not inputting the exact

intended location on the image. Our learning

algorithm attempts to correct the input by modeling

the tendency of users’ to input inaccurate points.

 Our approach assumes that an image consists of

several planes and that the ground is a straight

horizontal line (ie. the camera was not tilted

sideways.) With the second assumption we can

assert one important dependency in our model; that

the sides of planes will be vertical. Given this

relation, our model will attempt to correct vertices

in the image that have ‘close’ x-coordinates by

bringing the x-values closer together for a more

vertical line. How ‘close’ two points have to be will

be determined from our training data and will act as

a threshold as to when it is necessary to correct the

locations of the vertices.

2. Prior Work

 There have been many recent investigations of

producing a 3D model from a single image. Some

investigate texture distortion to infer the shape and

orientation of objects [3] while others attempt

deduce depth from the image from using relative

sizes of objects [4] to recognizing properties of the

structures in the image [5].

 In Saxena, Chung, and Ng [6] and [7] produces

depth maps using Markov Random Fields. Their

approach is to use MRF to train two models (a

jointly Gaussian MRF and Laplacian model) using a

large training set of images and corresponding true

depth maps. Our model takes on a similar approach

to their model in how they capture depth

relationships between neighboring patches and how

we will attempt to simulate the relationship between

neighboring vertices of planes. However, our

problem focuses more on correcting user input as

oppose to using features calculated inside the

image. This presents an interesting problem not

investigated by many papers: How accurate are

users in isolating different planes in an image?

While many can argue that it is easy to create a

mental 3D model of the image, it is not as easy to

specifically mark the boundaries of planes (e.g. an

object occluding part of a boundary). Thus, we will

investigate using supervised learning techniques

how much our model needs to adjust user inputs to

acquire the true vertices o the image.

3. Probabilistic Model

 There can be a wide variety of shapes and

orientations for the image planes for different

environments. Thus, the model must be able to

globally reason the spatial structure of the image by

modeling the relationship between vertices that

define the boundaries of the plane, as opposed to

defining set features over images from many

environments. It can be inferred that the vertices of

an image are not entirely independent of one

another. Vertices that belong to the same plane will

be highly correlated. For example, given the end of

a hallway, the back wall will be a rectangular plane.

Since we have restricted the scope of our problem

to having the ground be horizontal, then it is much

more likely that the x-coordinates of the plane’s left

boundary can construct a straight vertical line. The

same applies to the x-coordinates of the plane’s

right boundary.

 In fact, the majority of planes in images with a

horizontal ground will have vertical edges. We

cannot infer the same relationship with the y-

coordinates of the vertices because of the geometric

spatial properties of 3D objects, i.e. vanishing

points mean the top and bottom boundary lines of

planes will not necessarily be horizontal. Going

back to the example of the hallway in Figure 1,

there will also be planes of side-walls, which will

have different y-coordinates to represent the plane

tilted and sticking out in the 2D space.

 The second conjecture the model can make

relates to the expectation that, while not perfect, the

user input will be close to the actual divisional

boundaries. The model should be able to make a

prediction that is close to the user input.

3.1 Gaussian Model

 We employ a Gaussian Probabilistic Model

denoting the probability that y is the desired plane

boundaries, given a user input d parameterized by

variances (1).

 Where yi is the i
th

 point of the output, di is

the i
th

 point of the input, and yix is the x-component

of that point. Ne(i) is the set of all neighbors of

point i, where neighbor is defined as within

neighborThreshold pixels horizontally.

We use a Gaussian distribution to model the

relationship between the user data points and the

actual vertices locations. Given a set of M user

points, the first Gaussian term models the fact that

we believe the user input di to be close to the actual

vertex location yi.

 The second Gaussian term involves the x-

coordinates of neighboring output vertices of the

image. This models the fact that the planes in the

images have vertical boundary lines. Thus is the

user draws two points within neighborThreshold

pixels of each other horizontally we can assume

they were meant to be drawn perfectly vertically,

which maximizes that probability term.

3.2 Training the Variance Terms

 There are two parameters for our model: and

 . The first variance term represents how far from

the true boundary points the users tend to input their

points. The second variance term represents how far

from vertical the users tend to place neighboring

points. These variance terms are computed from the

training data to maximize the conditional log

likelihood . Since the model is

Gaussian, the maximum log likelihood can be

solved in closed form.

Using (1) we solve for the closed form of and

by setting the derivative of the log-likelihood in

terms of each variance to zero and solving for each

variance term respectively (2).

 (2)

3.3 Adjusting User Input

 Once we have learned the variance terms we can

then take a user’s input on an image from a new

environment and find the adjusted output y that

maximizes the probability in (1). We take the log of

(1) and then manipulate to achieve quadratic

programming form (2) to plug into MATLAB’s

solver.

subject to . H and c are shown in (4).

Ne is the neighborhood table where the element (i,j)

is 1 if the point yi is a neighbor of yj, 0 otherwise.

NumNe is a diagonal MxM matrix with values

representing the number of neighbors of each point

yi. See appendix for derivation of (4).

4. Experiments

4.1 Data Collection

 We used a camera to collect images of 20

different environments around the campus of

Cornell ranging from hallways to staircases. For

each of these environments we took 5 different

images. We labeled truth points by hand. We then

acquired 5-7 users input per image and collected the

locations of the plane vertices. This completes our

data set of over 500 images, each containing a range

of 6 to 15 points to indicate the vertices of the

image. For a given image, we required the user

inputs to be consistent. In other words, users must

label the same number of vertices in order for the

comparison between the user input and the actual

image output to evaluate correctly. We therefore

eliminated extraneous points that were not included

in the actual image output. We used this image

collection to train our data.

5. Results and Discussion

Figure 2a. Shows a user input where the plane

boundaries are slightly skewed. Figure 2b. shows the

output of our model which corrects the skewed

boundaries.

 We tested our model on several new

environments. Figure 2a shows the original user

input for an image and Figure 2b illustrates the

model’s adjusted mapping of the data points. The

output of our algorithm is visibly more vertically

aligned.

(a)

(b)

Figure 3. Finding the Optimal Neighbor Threshold.

 Figure 3 shows the average horizontal distance

between neighboring points in our test set for both

user input and our adjusted points. At a

neighborThreshold of 100 pixels, the users specify

points with an average of 32.5 pixels of vertical

alignment error, while our algorithm adjusts that to

an average of 17.8 pixels of error. This 14.7 pixel

improvement represents the largest error reduction

our algorithm can achieve. At this optimal neighbor

threshold the first variance term and

 . Our adjusted points have an average of

9.7 pixels from truth while the user input has error

of 5.7 pixels from truth.

 Our adjustment algorithm does slightly move the

users’ points farther from the truth points on

average. The truth points, however, were defined by

us and may not perfectly define the boundaries of

the image planes. Thus it is more important that the

adjusted points are closer to vertical lines as that

more accurately defines the plan boundaries. Hence,

our algorithm is successful in adjusting user input to

create more accurate plane boundaries.

Conclusion

 We have developed an algorithm that adjusts user

input so that vertices marked in an image are more

accurately positioned vertically. Therefore, if a user

skews the plane boundaries, our model will readjust

the plane boundaries so they are more vertical,

given the ground is horizontal. Our model was

given a training set of over 500 images each with a

series of data points and using this image sets we

applied a supervised learning technique to

determine two variance parameters. The first

variance parameter expresses how far the user tends

to draw a point from the true vertices of an image.

The second variance parameter examines how much

the users tend to skew neighboring vertices so that

the plane boundary is slanted. Testing our model on

new environments, we observed that our model

corrects slanted boundaries by correcting the x-

coordinates of points if they are within a specific

threshold.

 Using the vertices of the image, a 3D model can

be constructed by dividing the image into planes

based on adjusted user inputs and applying a 3D

modeling algorithm such as [6] and [8]; eliminating

certain steps such as boundary and edge detection.

 Our model has many exciting potential

applications. With tablets and touch-screen hand-

held devices becoming more and more popular, our

model can be integrated with other 3D model

algorithms to help generate the final 3D output.

With a touch-screen, the user doesn’t have to

accurately pinpoint the location of the vertices in

the image because our algorithm will readjust if

necessary. Thus, our work has many promising use

for many other applications in vision.

Appendix

 Derivation for finding the quadratic programming

form of the Gaussian Probabilistic Model (1).

Where # is a diagonal matrix with values

corresponding to the total number of neighbors of

each point. Ne is a neighborhood matrix where cell

(i,j) index is 1 if the point yi is a neighbor of yj.

Using (3), we solved for the elements in the

quadratic problems subject to where A is

the negative identify matrix and b is zeros vector of

size M so that points cannot have negative values.

References
[1] Derek Hoie, Malexei A. Efros, Martial Hebert. “Recovering Surface Layout from an Image.” International Journal of

Computer Vision (2007): 151–172.

[2] R. Cipolla, T. Drummond and D. Robertson. “Camera calibration from vanishing points.” BMVC99 (1999): 382-391.

[3] Rosenholtz, J. Malik and R. "Computing Local Surface Orientation and Shape from Texture for Curved Surfaces."

Internation Journal of Computer Vision (1997): 149-168.

[4] Li Bing, Xu De, Feng Songhe, Wu Aimin and Yang Xu. "Perceptual Depth Estimation from a Single 2D Image Based on

Visual Perception Theory." Advances in Multimedia Information Processing (2006): 88-95.

[5] Antonio Torralba, Aude Oliva. "Depth Estimation from Image Structure." IEEE Transactions on Pattern Analysis and

Machine Intelligence (2002): 2002-2015.

[6] Ashutosh Saxena, Min Sun, Andrew Y. Ng. "Make3D: Learning 3-D Scene Structure from a Single Still Image." IEEE

Transactions on Pattern Analysis and Machine Intelligence (2008).

[7] Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. "Learning Depth from Single Monocular Images." Neural Information

Processing Systems (2005).

[8] A. R. J. Francois, G. G. Medioni. " Interactive 3D Model Extraction from a Single Image." Image and Vision Computing.

(2001): 317-328.

