
CS 6780: Advanced Machine Learning
Homework 4

Due date: 12pm. Dec 3, 2010 (Printed submission.)

Note:
1. Write your name and net-id on the first page.
2. For derivation questions, please show all the necessary steps.
3. For data analysis / programming parts, you need to submit: (a) the spe-
cific values and plots requested, (b) explanation in the text if needed (don’t
give us the code printouts only!), and (c) the code in the appendix.

1 Basics of Graphical Models

(a) [3 points] Provide an example of a distribution P (X1, X2, X3) where for
each i 6= j, we have that (Xi ⊥ Xj) is true, but we also have that (X1, X2 ⊥
X3) is not true.
(b) [2 points] Give an example of a joint distribution over (X1, X2) (belonging
to exponential family) for which the Cov(X1, X2) = 0, but X1 ⊥ X2 is not
true.
(c) [10 points] Let G1 and G2 be two graphs over X. If G1 and G2 have the
same skeleton and the same set of v-structures then prove that they represent
same independence assumptions.

2 Junction Tree

(a) [10 points] Eve is now looking for WallE using her cameras, but could
not find WallE. Help her out by helping in building a WallE classifier!

Eve has small circuits for performing sum-product, etc. We know that
even any graph can be converted into a “tree” — junction tree. So, your goal

1



is to design a junction-tree of the graph Eve has in her mind for WallE.1

(10 points)
(b) [10 points]
In the juction-tree, start from the head node as ‘root’ node, and write the

sum-product messages coming in from all the leaves to the root, and then
from the root to all the leaves. (In order to save time in writing, you can
assume the hands/legs of the WallE are symmetric, so you can just write it
for one side, i.e., H1, all Bs, Head and all Ls.)

(c) [10 points]
Do part (b) for max-sum messages for leaf-to-root direction.
Read Bishop ch. 8, and explain concisely in a line what would you do for

root-to-leaf messages.

3 Kalman Filter

(a) [5 points] One of the most computation intensive part in Kalman filter is
inversion of matrices. For a state of size 10 and measurement of size 5, what
is maximum size of the matrix one has to invert.

(b) [10 points] Consider the version of the Kalman filter described in the
class (where everything is Gaussian and there is no control input). Now,
lets change the prior distribution p(x0), i.e., initial state from Gaussian to
a mixture of K Gaussians. Does the inference in Kalman filter remains

1Loopy methods are not being used here, because if they don’t converge Eve might not
be able to find WallE.
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tractable2 ? Explain concisely.

(c) [10 points] Now, we model the state update error ε, p(ε) using a mixture
of L Gaussians. Does it remain tractable? Explain concisely.

4 Markov Random Field

(a) [12 points] In some applications such as stereo vision and image denoising,
we deal with continuous variables. Gaussian densities are first ones that one
could try.

Given a grid-MRF (e.g., each node is connected to the top, left, right
and bottom node), each node yi ∈ < represents what we want to predict,
and xi ∈ <K are the input features for that pixel. For n nodes, we will have
i = 1, ..., n, and use y to represent the set y = {y1, ..., yn}.

Our model is (similar to Saxena, Chung, Ng, NIPS 2005):

p(y|x; θ) ∝
n∏

i=1

exp(−(yi − xT
i θ)

2/2σ2
1)

∏
j∈N(i)

exp(−(yi − yj)
2/2σ2

2)

where N(i) are the neighbors of i.
During inference (testing) phase, we are given θ, σ2

1, σ
2
2 and xi’s, and we

have to calculate y∗ = arg maxy p(y|x; θ, σ1, σ2). Write the above maximiza-
tion as a convex program (specifically a quadratic program).

(b) [18 points] In some other applications, such as image segmentation
(where each pixel can belong to one of a few classes), we deal for discrete
variables.

Given a grid-MRF (e.g., each node is connected to the top, left, right and
bottom node), each node yi ∈ {−1, 1} represents what we want to predict,
and xi ∈ <K are the input features for that pixel. For n nodes, we will have
i = 1, ..., n, and use y to represent the set y = {y1, ..., yn}.

Our model is (similar to Kumar and Hebert, 2004):

p(y|x; θ) ∝
n∏

i=1

ps(yi|xi; θ)
∏

j∈N(i)

exp(βyiyj)

2Here, tractable means that the exact inference does not grows (exponentially) with
time.

3



where N(i) are the neighbors of i, and

ps(yi|xi; θ) ∝
1

1 + exp(−θTxiyi)

.
Write code that can compute y∗ = arg maxy p(y|x; θ), for β = 0.9, and

for values of θ and xi given in file discretemrf-cs6780.txt. Here we use
tables to store the probabilities.
Bonus: Write concisely what would you do when you’re given a grid of size
30x30 instead of 3x3.

5 Bonus/Optional: Latent Dirichlet alloca-

tion

Latent Dirichlet Allocation, or LDA, (Blei et. al. 2003) is a model for
discovering topics in a collection of documents. The graphical model we will
work with is as follows:

α zθ

β

M

N

w

Here’s how the data are generated according to the model:

• For each document, m = 1,...,M

– Draw topic probabilities θm ∼ p(θ|α)

– For each of the N words:

∗ Draw a topic zmn ∼ p(z|θm)

∗ Draw a word wmn ∼ p(w|zmn, β)
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where p(θ|α) is a Dirichlet distribution, and where p(z|θm) and p(w|zmn, β)
are multinomial distributions. Treat α and β as fixed hyperparameters. Note
that β is a matrix, with one column per topic, and the multinomial variable
zmn selects one of the columns of β to yield multinomial probabilities for
wmn. (See the paper “Latent Dirichlet Allocation” by Blei et. al. on the
course website for more details if needed). Write down a Gibbs sampler for
the LDA model. That is, write down the conditional probabilities of z and θ
given their Markov blankets so that we can sample from these distributions.
(20 points)
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