
CS 6780: Advanced Machine Learning
Homework 3

Due date: 12pm. Nov 11, 2010 (Printed submission.)

Note:
1. Write your name and net-id in BIG letters on the first page. Do not write
anything else on the first-page of the homework.
2. For derivation questions, you need to show all the necessary steps.
3. For data analysis / programming parts, you need to submit: (a) the spe-
cific values and plots requested, (b) explanation in the text if needed (don’t
give us the code printouts only!), and (c) also provide the code in the ap-
pendix.

1 GDA

(a) [10 points] For this part of the problem only, you may assume n (the
dimension of x) is 1, so that Σ = [σ2] is just a real number, and likewise the
determinant of Σ is given by |Σ| = σ2. Given the dataset, we claim that the
maximum likelihood estimates of the parameters are given by

φ =
1

m

m∑
i=1

1{y(i) = 1} (1)

µ0 =

∑m
i=1 1{y(i) = 0}x(i)∑m

i=1 1{y(i) = 0}
(2)

µ1 =

∑m
i=1 1{y(i) = 1}x(i)∑m

i=1 1{y(i) = 1}
(3)

Σ =
1

m

m∑
i=1

(x(i) − µy(i))(x(i) − µy(i))T (4)
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The log-likelihood of the data is

l(φ, µ0, µ1,Σ) = log
m∏

i=1

p(x(i), y(i);φ, µ0, µ1,Σ) (5)

= log
m∏

i=1

p(x(i)|y(i);µ0, µ1,Σ)p(y(i);φ) (6)

By maximizing l(.) with respect to the four parameters, prove that the
maximum likelihood estimates of φ, µ0, µ1, and Σ are indeed as given in the
formulas above. (You may assume that there is at least one positive and one
negative example, so that the denominators in the definitions of µ0 and µ1

above are non-zero.)
(b) [Bonus extra credit points] Without assuming that n = 1, show that

the maximum likelihood estimates of φ, µ0, µ1, and Σ are as given in the
formulas in part (a). [Note: If youre fairly sure that you have the answer to
this part right, you dont have to do part (a), since thats just a special case.]

2 Regression

We have two different datasets: (X1, y1) and (X2, y2). One way to learn the
parameters is to train two independent linear regressions:
θ1,ind = arg min(X1θ1 − y1)

T (X1θ1 − y1)
θ2,ind = arg min(X2θ2 − y2)

T (X1θ2 − y2).
However, the two datasets are somewhat related, therefore we would like

to train two different parameters θ1 and θ2, but would want θ1 and θ2 to be
close. Derive the closed form expression for θ1 that minimizes J(θ1, θ2) as
given below.

J(θ1, θ2) = (X1θ1−y1)
T (X1θ1−y1)+(X2θ2−y2)

T (X2θ2−y2)+λ(θ1−θ2)
T (θ1−θ2)

Note that closed form expression for θ1 should only depend onX1, X2, y1, y2.
(10 points)

3 GLM

Consider using GLM with a response variable from any member of the ex-
ponential family in which T (y) = y, and the canonical response function for
the family. I.e., η = θTx and h(x) = E[y|x] =

∫
y
p(y|x; θ)y.
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Show that stochastic gradient ascent on the log-likelihood log p(y|X; θ)
results in the update rule:
θj+1 = θj − α(h(x(i))− y(i))x(i)

Hint: exp(a(η)) =
∫

y
b(y) exp(ηy). (a(η) plays the role of normalizing the

exponential family distribution.) Compute a′(η). (10 points)

4 Isomap

Isomaps could be sometimes useful for visualizing data (and could also be
used as a dimensionality reduction technique to run further learning algo-
rithms).

(a) Go to http://waldron.stanford.edu/ ∼ isomap/, and download the
code. Run it on the Swiss-roll data set (http://waldron.stanford.edu/ ∼
isomap/datasets.html). Add IID Gaussian noise N(0, σ2) to the data, and
run isomap algorithm on it. Increase σ2 ≥ 0, and report the value of σ when
the isomap algorithm fails to find a good embedding.1 (7 points)

(b) Take the dataset from your course project (or your dataset related to
your research) and run isomap on that dataset.2 Report what you observe.
(8 points)

5 ICA

In this question, we will prove that the sources are not separable if they
are Gaussian. (This includes sources that are Gaussian and with arbitrary
covariance matrices.)

Specifically, assume two zero mean sources s1 and s2. I.e., s = {s1, s2} ∈
<2 and s ∼ N(0,Σ). After mixing, we record x = As for A ∈ <2×2. Our
goal is to find A and s given x for m recordings.

(a) [3 points] Given s is a zero mean Gaussian, prove that x is a zero-mean
Gaussian too.

1Hint: (a) Use atleast 2000 points; trying to use all of them might take quite long,
(b) Use Isomap(.); if you use IsomapII, then make sure you are using the compiled mex
version of dijsktra file.

2Only for theoretical projects where datasets do not apply at all, you can do
the following instead: Download the faces data http://waldron.stanford.edu/ ∼
isomap/face data.mat.Z, and the isomap code on this data.
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(b) [7 points] Since x is a Gaussian, E(xxT ) completely defines the distri-
bution. Prove that given E(xxT ), it is impossible to figure out if the source
was N(0,Σ) with mixing matrix A or if the source was N(0, RT ΣR) with
mixing matrix AR. (R is a rotation matrix and it follows RRT = RTR = I.)

6 Clustering

(a) Spectral clustering. For the version of the algorithm described in the class
(similar to Ng, Jordan and Weiss, 2000), the eigenvalues of the normalized
affinity matrix L = D−.5WD−.5 for 20 data-points are provided. Estimate
the number of clusters in the data. (Explain in a line.)

Eigenvalues = 0, .1, .9, .95, 0, 1, 0, .05, 0, .1, .9, .1, .2, .1,

1, 0, 0, .1, .2, .85

(5 points)
(b) Consider A. Mixture of Gaussians model with EM and B. k-means

clustering. You have to prove that ’A’ becomes same as ’B’ with the
following changes in ’A’:

• Fix Σ = σ2I for all clusters.

• Replace w
(i))
j = p(z(i) = j|x(i);φ, µ,Σ) in the E-step with:

j∗ = arg max
j

p(z(i) = j|x(i);φ, µ,Σ)

w
(i)
j = 1{j = j∗}

This is called “Hard-EM”.
(5 points)

7 Non-Negative Matrix Factorization

Many of the variables that we deal with are constrained to be positive. PCA
does not put any such constraint on the variables. Here we have a data
matrix X ∈ <m×n with m data-points in n dimensions. We want to factor
X as

X ≈ WH (7)
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where W is m× k, H is k×n, k ≤ max(m,n), and xij, wik, hkj ≥ 0. Assume
that xij has a Poisson distribution with mean (WH)ij (i.e., ijth entry of
matrix WH), and each xij is IID.

(a) Derive the log-likelihood L(W,H) of the model above. Is L(W,H) convex
in (W,H)? (5 points)

(b) Kullback-Leibler divergence between two distributions P (i, j) and Q(i, j)
is defined as

DKL(P ||Q) =
∑
ij

P (i, j) log
P (i, j)

Q(i, j)
(8)

Prove that maximizing L(W,H) is equivalent to minimizing DKL(X||WH),
where we consider X(i, j) and WH(i, j) as normalized distributions. (I.e., if∑

ij X(i, j) = 1 and
∑

ij WH(i, j) = 1. (7 points)

(c) We will use the following alternating algorithm (Lee and Seung, 2001), in
which we iterate between optimizing for W (assuming H constant) and opti-
mizing for H (assuming W constant). Prove that for δgH(W )/δwik = 0 and
for δhW (H)/δhkj = 0 respectively, the following update rule will converge:

wik ← wik

∑n
j=1 hkjxij/(WH)ij∑n

j=1 hkj

(9)

hkj ← hkj

∑m
i=1wikxij/(WH)ij∑m

i=1wik

(10)

Here gH(W ) = L(W,H) with H constant, and hW (H) = L(W,H) with W
constant. (8 points)

(d) Write code for finding W and H given X. (Provide the code in the
appendix.) Find the Non-negative Matrix Factorization of the face-data in
previous homework.3 I.e., X is m × n matrix of the face-data (where each
row is a face). For k = 10, display the 10 basis images H. (15 points)

3You may have to choose smart methods to initialize.
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