
CS 6780: Advanced Machine Learning
Homework 2

Due date: 12pm. Oct 8, 2010
(Printed submission.)

Note:
1. Write your name and net-id in BIG letters on the first page. Do not write
anything else on the first-page of the homework.
2. For derivation questions, you need to show all the necessary steps. Just
writing the answers won’t do.
3. For data analysis / programming parts, you need to submit: (a) the spe-
cific values and plots requested, (b) explanation in the text if needed (don’t
give us the code printouts only!), and (c) also provide the code in the ap-
pendix.

1 Nearest Neighbor

(a) If the training data comes in pairs (xi, yi), yi ∈ {0, 1} then the distance
weighted k nearest neighbor rule classifies a new point x∗ 6= xi∀i as:

S∗ = {j|xjis one of the k points with smallest ||xj − x∗||}

ŷ =

∑
i∈S∗

wiyi∑
i∈S∗

wi

, where wi =
1

||xi − x∗||2

If a learning algorithm can be expressed solely in terms of operations on
inner products between the data, we can use the kernel trick, i.e. replacing
all inner products with evaluations of a kernel function: k : X × X → R
which is implicitly computing the inner product of its two arguments as if
they were first mapped in a potentially high dimensional (and “richer”) space.
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Reformulate the distance weighted k nearest neighbor classification rule so
that it can use a kernel. (8 points)

(b) My bank’s machines cannot read some checks because the software has
trouble distinguishing between the digits 4 and 9. Your task is to use the data
in the files (4vs9-train.dat,4vs9-train.lab, 4vs9-test.dat,4vs9-test.lab)
to come up with a good distance weighted classification rule. The data are
digitized images of 4 and 9 written by different people. Each feature is a
pixel and its value is the intensity of that pixel. In the .dat files, each row
is a vector of features whose correct label is in the corresponding row of the
.lab file, 0 for images of 4 and 1 for 9. Pick the nearest neighbors from the
train files and use the test files to evaluate your classification rule. You have
two degrees of freedom, specifying k, and specifying a kernel. Report the
things your tried, the best combination of k and kernel you found, and the
value of ||ŷ− y|| that was attained for that combination. You can use knn.m

as a starting point. Valid kernels include the linear: k(x, x′) = x · x′, the
Gaussian k(x, x′) = exp(−γ||x− x′||2), the polynonial k(x, x′) = (x · x′+ c)d,
and many others. (15 points1)

2 Support Vector Machines and Kernels

2.1 Kernels

Prove that K(xi, xj) = exp(−||xi − xj||2) is a valid kernel.
You can only use the identities given below:
If k1(x, x

′) and k2(x, x
′) are valid kernels, then k(x, x′) is also a valid

kernel:

k(x, x′) = ck1(x, x
′), for c > 0

k(x, x′) = k1(x, x
′) + k2(x, x

′)

k(x, x′) = k1(x, x
′)k2(x, x

′)

k(x, x′) = exp(k1(x, x
′))

k(x, x′) = f(x)k1(x, x
′)f(x′)

where f(x) is any function of x.
(6 points)

1You would be evaluated based on how accurate you got it to work, the choices made
(with explanation).
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2.2 Non-separable case

(SVM). Draw the decision boundary (solid line) and the margins (dashed
line) for a low value of C in figure below (left). Draw the same for a high
value of C (right). (Here C is the parameter of the SVM in the non-separable
case.) (4 points)

(a) low value of C (b) large value of C

2.3 Implementation

SVMperf is a very fast SVM solver for linear SVMs that can optimize many
performance measures apart from accuracy (hence the name “perf”). Down-
load it from:
http://www.cs.cornell.edu/People/tj/svm light/svm perf.html

and download the astrophysics data from the course website. These repre-
sent abstracts of scientific papers from physics classified by whether they are
about astrophysics. The data have 99757 features and they are split into
29882 training examples and 32487 test examples. Use 5-fold cross valida-
tion on the training set to pick a good value for the C parameter of the SVM
and report the best test accuracy and the C for which it was attained.2 (12
points)

2Hint: (a) Search for C on a log-scale. (b) It might be easier to run it on Linux.
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3 Eigen-Grads

In 1990’s, people came up with EigenFaces. In this part, we will try to apply
it to faces of grad students.
(a) Download the dataset face-data.zip, and you can use the Matlab

starter code faces.m in face-code.zip for this problem. Choose the min-
imum number of dimensions k needed so that you loose no more than 10
percent of the variance in the data. (Plot fraction error as a function of k.)
(6 points)
(b) Show the k eigenfaces (the basis vectors) as an image. (4 points)

(c) Divide the dataset into two categories: male and female faces. Train a

logistic classifier (you can use glmfit in Matlab) using the projected data
into k dimensions (use k and the basis obtained from the previous part).
Using Leave-one-out-cross-validation (LOOCV), report the following errors:
(i) E1 = total mistakes

total
, and (ii) E2 = 0.5mistakes class1

class1 total
+ 0.5mistakes class2

class2 total
.

Now, vary k (and re-run the PCA on the 29 images) in order to improve
the performance (as measured by 2nd definition of error.) With this optimal
value of k, report the LOOCV errors (call them Ē1 and Ē2.

You have now build a “image-based gender classifer,” and now imagine
you were writing a research paper on this. Would you call the final LOOCV
error Ē2 as “test error” or “training error” or something else in your research
paper? Why? What would you call the error E2? (20 points)

Bonus question: Is the accuracy good enough? If not, suggest two methods
that you think would help fix the problem (write a phrase for each).

4 Mixture of Two Linear Regressions

Often a single generalized linear model does not fit the data well. In such
cases, we can fit a set of k generalized linear models to our data. In this
question, we will consider a mixture of two linear regressions. Suppose that
we have i.i.d. training data in the form (x(i), y(i)), i = 1, . . . ,m, x(i) ∈ Rn,
y(i) ∈ R and we assume that each y(i) is generated as a linear combination of
x(i) with either w0 or w1, depending on the value of an unobserved Bernoulli
variable z(i) ∈ {0, 1}, plus noise. Here, we also model z(i) as a function of
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input data x(i). Formally,

P (z(i) = 1|x(i); θ) =
1

1 + exp(−θTx(i))

P (y(i)|z(i), x(i);w0, w1) =
1

σ
√

2π
exp

(
−

(y(i) − wT
z(i)x

(i))2

2σ2

)

Explain why it is hard to estimate the parameters w0, w1, θ in a closed form.
Derive an EM algorithm for this model to estimate the parameters w0, w1, θ.

Hints: (a) Our data are x and y, so in the E step you should compute the
distribution of the unobserved variable z given both, not just x as in the case
of the mixture of gaussians. (b) In the M step, you may discover that one
of the updates still cannot be obtained in closed form. In such case, explain
if/how we can overcome this. We look for the simplest correct explanation.
(25 points)
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