Lecture 12: Particle-based inference: Gibbs sampling

e Gibbs sampling
e Markov chains
e Markov Chain Monte Carlo (MCMC) methods
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Recall from last time: Particle-based inference

Suppose we have evidence E = e and we want to know
p(Y|E = e) for some query variables Y’

Particle-based methods will generate particles and then
compute sufficient statistics to estimate this answer

Likelihood weighting has an easy way of producing samples: go
through the Bayes net in the direction of the arcs, sample nodes
without evidence and set the value for evidence variables

Since these samples are from a “mutilated” Bayes net, NOT
from p(Y'|E = e) each particle must have a weight. The
weights are used instead of counts in the probability estimation.
But these weights can get very small, and then we would need

to sample a lot of data to get good estimates.
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A different idea

PC) =5

e Suppose we want to compute P(R|S = 1)
e \We generate one sample, with the given evidence variables
instantiated correctly

e Then we keep changing it!

e |f we are careful, we will get samples from the correct

distribution
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Gibbs sampling

. Initialization
e Set evidence variables Ej, to the observed values e
e Set all other variables to random values (e.g. by forward
sampling, uniform sampling...)
This gives us a sample x1, ..., Ty.
. Repeat (as much as wanted)
e Pick a non-evidence variable X; uniformly randomly)

/
e Sample z; from p(X;|x1, ..., Ti—1, Tit1, ..., Tn).

e Keep all other values: =, = x;,Vj # i

e The new sampleis z}, ..., z),
. Alternatively, you can march through the variables in some

predefined order
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Why Gibbs works in Bayes nets

The key step is sampling according to

p(Xi|lz1, ..., Ti—1,%it1,...,T,). How do we compute this?
In Bayes nets, we know that a variable is conditionally
independent of all other given its Markov blanket (parents,
children, spouses)

p(Xilz1, ..., i1, %iq1,. .., xn) = p(X;|MarkovBlanket(.X;))

So we need to sample from P(X;|MarkovBlanket(X;))
LetY;,7 = 1,..., k be the children of X;. We can show that:
p(X; = x;|MarkovBlanket(X;)) o p(X; = x;|Parents(X;)) -

T] (¥; = uslParens(¥;)
j=1
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Example

s
1
1
0
0

1. Generate a firstsample: C =0, R =0,5=0,W = 1.

2. Pick R, sample it from p(R|C = 0,W = 1,S = 0). Suppose
we get R = 1.

3. OurnewsampleisC =0,R=1,S=0,W =1
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Analyzing Gibbs sampling

e Consider the variables X1, ..., X,,. Each possible assignment
of values to these variables is a state of the world, (z1, ..., z,).
e |n Gibbs sampling, we start from a given state
s = (x1,...,Ty,). Based on this, we generate a new state,
/ / /
s =z, ..., Th).

e s’ depends only on s!

e There is a well-defined probability of going from s to s’.

Gibbs sampling constructs a Markov chain over the Bayes net
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Markov chains

A Markov chain is defined by:
e A set of states S
e A starting distribution over the set of states po(s) = p(so = s).
If the state space is discrete, this can be represented as a
column vector po
e A stationary transition probability psss = p(si+1 = s'|st = s).
For convenience, we often put these inan x n matrix T

So —>81 ——> 8t — St41 — ...
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Steady-state (stationary) distribution Properties of Markov chains

i i i ?
® Where will the chain be in 1 step e Do all Markov chains converge to a stationary distribution?

/ / /
P1 =Pol — pP1 =T po
e \When this distribution exists, is it always unique?
where T denotes the transpose of T’

® |n two steps?

/ N2
P2 =T"p1=(T")"po e Are there conditions under which we can guarantee that the

e Int steps? distribution is unique?
pe = T'pe—1 = (T")'po

A stationary distribution 7 is a distribution left invariant by the

chainmt = T'w
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Ergodicity
Properties of Markov chains -

An ergodic Markov chain is one in which any state is reachable

° i i istribution? . -
Do all Markov chains converge to a stationary distribution from any other state, and there are no strictly periodic cycles

Not Consider periodic_Markov chains (which contain cycles) In such a chain, there is a unique stationary distribution 7

e When this distribution exists, is it always unique* which can be obtained as:

No! It may depend on the initial distribution. Such chains are

called reducible m = lim p;
t—o0

e Are there conditions under which we can guarantee that the

This is called equilibrium distribution
distribution is unique? . _— o
d Note that the chain reaches the equilibrium distribution

Yes.
regardless of po
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Detailed balance

e Consider the stationary distribution:

This can be viewed as a “flow” property: the flow out of s’ has to
be equal to the flow coming into s’ from all states
e One way to ensure this is to make flow equal between any pair

of states:

m(s)p(s, s') = m(s)p(s', 5)

This gives us a sufficient condition for stationarity, called

detailed balance

e A Markov chain with this property is called reversible
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Markov Chain Monte Carlo methods

Suppose you want to generate samples from some distribution
(but it is hard to get samples directly

E.g., We want to sample uniformly the space of graphs with
certain properties

You set up a Markov chain such that its stationary distribution is

the desired distribution

Note that the "states” of this chain can be fairly complicated!
You start at some state, let time pass, and then take samples
For this to work we need to ensure:

— that the chain has a unique stationary distribution

— that the stationary distribution is what we want

— that we reach the stationary distribution quickly
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Sampling the equilibrium distribution

e We can sample 7 just by running the chain a long time:
— Set sg = ¢ for some arbitrary 2
—Fort=1,...,M,if s; = s, sample a value s’ for s;+1
based on p(s, s’)
— Return syy.
If M is large enough, this will be a sample from ©
e In practice, we would like to have a rapidly mixing chain, i.e. one

that reaches the equilibrium quickly
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Implementation issues

The initial samples are influenced by the starting distribution, so
they need to be thrown away. This is called the burn-in stage
Because burn-in can take a while, we would like to draw several
samples from the same chain!

However, if we take samples ¢, t 4+ 1, t 4 2..., they will be highly
correlated

Usually we wait for burn-in, then take every nth sample, for
some n sufficiently large. This will ensure that the samples are

(for all practical purposes) uncorrelated
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Gibbs sampling as MCMC

We have a set of random variables X = {z1 ...x,}, with
evidence variables £ = e. We want to sample from

p(X — E|E =e).

Let X; be the variable to be sampled, currently set to x;, and Z;
be the values for all other variables in X — F — { X}

The transition probability for the chain is: p(s, s’') = p(z|Z;, €)
Obviously the chain is ergodic

We want to show that p(X — F|e) is the stationary distribution.
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Gibbs satisfies detailed balance

7(s)p(s,s’) p(X — Ele)p(x;|zi, e)

p(x:, Tile)p(xi|Zi, e)

x:|Zs, e)p(x;, Ti|e) (backwards chain rule)

(

( (z

(xi|Z:, e)p(Zi|e)p(x;|Z:, €) (by chain rule)
(

(s

" s)m(s’)
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