
Lecture 12: Particle-based inference: Gibbs sampling

• Gibbs sampling

• Markov chains

• Markov Chain Monte Carlo (MCMC) methods
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Recall from last time: Particle-based inference

• Suppose we have evidence E = e and we want to know

p(Y |E = e) for some query variables Y

• Particle-based methods will generate particles and then

compute sufficient statistics to estimate this answer

• Likelihood weighting has an easy way of producing samples: go

through the Bayes net in the direction of the arcs, sample nodes

without evidence and set the value for evidence variables

• Since these samples are from a “mutilated” Bayes net, NOT

from p(Y |E = e) each particle must have a weight. The

weights are used instead of counts in the probability estimation.

• But these weights can get very small, and then we would need

to sample a lot of data to get good estimates.
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A different idea
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• Suppose we want to compute P (R|S = 1)

• We generate one sample, with the given evidence variables

instantiated correctly

• Then we keep changing it!

• If we are careful, we will get samples from the correct

distribution
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Gibbs sampling

1. Initialization

• Set evidence variables Ej, to the observed values e

• Set all other variables to random values (e.g. by forward

sampling, uniform sampling...)

This gives us a sample x1, . . . , xn.

2. Repeat (as much as wanted)

• Pick a non-evidence variable Xi uniformly randomly)

• Sample x′

i from p(Xi|x1, . . . , xi−1, xi+1, . . . , xn).

• Keep all other values: x′

j = xj , ∀j 6= i

• The new sample is x′

1, . . . , x
′

n

3. Alternatively, you can march through the variables in some

predefined order
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Why Gibbs works in Bayes nets

• The key step is sampling according to

p(Xi|x1, . . . , xi−1, xi+1, . . . , xn). How do we compute this?

• In Bayes nets, we know that a variable is conditionally

independent of all other given its Markov blanket (parents,

children, spouses)

p(Xi|x1, . . . , xi−1, xi+1, . . . , xn) = p(Xi|MarkovBlanket(Xi))

• So we need to sample from P (Xi|MarkovBlanket(Xi))
• Let Yj , j = 1, . . . , k be the children of Xi. We can show that:

p(Xi = xi|MarkovBlanket(Xi)) ∝ p(Xi = xi|Parents(Xi)) ·

·

k
Y

j=1

p(Yj = yj |Parents(Yj))
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Example
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1. Generate a first sample: C = 0, R = 0, S = 0,W = 1.

2. Pick R, sample it from p(R|C = 0,W = 1, S = 0). Suppose

we get R = 1.

3. Our new sample is C = 0, R = 1, S = 0,W = 1

4. ....
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Analyzing Gibbs sampling

• Consider the variables X1, . . . , Xn. Each possible assignment

of values to these variables is a state of the world, 〈x1, . . . , xn〉.

• In Gibbs sampling, we start from a given state

s = 〈x1, . . . , xn〉. Based on this, we generate a new state,

s′ = 〈x′

1, . . . , x
′

n〉.

• s′ depends only on s!

• There is a well-defined probability of going from s to s′.

Gibbs sampling constructs a Markov chain over the Bayes net
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Markov chains

A Markov chain is defined by:

• A set of states S

• A starting distribution over the set of states p0(s) = p(s0 = s).

If the state space is discrete, this can be represented as a

column vector p0

• A stationary transition probability pss′ = p(st+1 = s′|st = s).

For convenience, we often put these in a n × n matrix T

s0 → s1 → · · · → st → st+1 → . . .
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Steady-state (stationary) distribution

• Where will the chain be in 1 step?

p
′

1 = p
′

0T −→ p1 = T
′

p0

where T ′ denotes the transpose of T

• In two steps?

p2 = T
′

p1 = (T ′)2p0

• In t steps?

pt = T
′

pt−1 = (T ′)t
p0

A stationary distribution π is a distribution left invariant by the

chain:π = T ′π
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Properties of Markov chains

• Do all Markov chains converge to a stationary distribution?

No! Consider periodic Markov chains (which contain cycles)

• When this distribution exists, is it always unique?

No! It may depend on the initial distribution. Such chains are

called reducible

• Are there conditions under which we can guarantee that the

distribution is unique?

Yes. For finite Markov chains, a sufficient condition is that the

chain be regular : there exists a k such that the probability of

getting from s to s′ in k steps is strictly positive
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Properties of Markov chains

• Do all Markov chains converge to a stationary distribution?

No! Consider periodic Markov chains (which contain cycles)

• When this distribution exists, is it always unique?

No! It may depend on the initial distribution. Such chains are

called reducible

• Are there conditions under which we can guarantee that the

distribution is unique?

Yes.
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Ergodicity

• An ergodic Markov chain is one in which any state is reachable

from any other state, and there are no strictly periodic cycles

• In such a chain, there is a unique stationary distribution π,

which can be obtained as:

π = lim
t→∞

pt

This is called equilibrium distribution

• Note that the chain reaches the equilibrium distribution

regardless of p0
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Detailed balance

• Consider the stationary distribution:

π(s′) =
X

s

π(s)p(s, s′)

This can be viewed as a “flow” property: the flow out of s′ has to

be equal to the flow coming into s′ from all states

• One way to ensure this is to make flow equal between any pair

of states:

π(s)p(s, s′) = π(s′)p(s′, s)

This gives us a sufficient condition for stationarity, called

detailed balance

• A Markov chain with this property is called reversible
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Markov Chain Monte Carlo methods

• Suppose you want to generate samples from some distribution

(but it is hard to get samples directly

E.g., We want to sample uniformly the space of graphs with

certain properties

• You set up a Markov chain such that its stationary distribution is

the desired distribution

• Note that the ”states” of this chain can be fairly complicated!

• You start at some state, let time pass, and then take samples

• For this to work we need to ensure:

– that the chain has a unique stationary distribution

– that the stationary distribution is what we want

– that we reach the stationary distribution quickly
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Sampling the equilibrium distribution

• We can sample π just by running the chain a long time:

– Set s0 = i for some arbitrary i

– For t = 1, . . . , M , if st = s, sample a value s′ for st+1

based on p(s, s′)

– Return sM .

If M is large enough, this will be a sample from π

• In practice, we would like to have a rapidly mixing chain, i.e. one

that reaches the equilibrium quickly
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Implementation issues

• The initial samples are influenced by the starting distribution, so

they need to be thrown away. This is called the burn-in stage

• Because burn-in can take a while, we would like to draw several

samples from the same chain!

• However, if we take samples t, t + 1, t + 2..., they will be highly

correlated

• Usually we wait for burn-in, then take every nth sample, for

some n sufficiently large. This will ensure that the samples are

(for all practical purposes) uncorrelated
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Gibbs sampling as MCMC

• We have a set of random variables X = {x1 . . . xn}, with

evidence variables E = e. We want to sample from

p(X − E|E = e).

• Let Xi be the variable to be sampled, currently set to xi, and x̄i

be the values for all other variables in X − E − {Xi}

• The transition probability for the chain is: p(s, s′) = p(x′

i|x̄i, e)

• Obviously the chain is ergodic

• We want to show that p(X − E|e) is the stationary distribution.
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Gibbs satisfies detailed balance

π(s)p(s, s′) = p(X − E|e)p(x′

i|x̄i, e)

= p(xi, x̄i|e)p(x′

i|x̄i, e)

= p(xi|x̄i, e)p(x̄i|e)p(x′

i|x̄i, e) (by chain rule)

= p(xi|x̄i, e)p(x′

i, x̄i|e) (backwards chain rule)

= p(s′, s)π(s′)
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