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Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p⋆

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(

f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p⋆

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ, ν)
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Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx + νT (Ax − b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x + ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −
1

4
νTAATν − bTν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAATν − bTν for all ν
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Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

• Lagrangian is

L(x, λ, ν) = cTx + νT (Ax − b) − λTx

= −bTν + (c + ATν − λ)Tx

• L is affine in x, hence

g(λ, ν) = inf
x

L(x, λ, ν) =

{

−bTν ATν − λ + c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ + c = 0}, hence concave

lower bound property: p⋆ ≥ −bTν if ATν + c � 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x

(‖x‖ − νTAx + bTν) =

{

bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 uTv is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

• if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

• if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uTy = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗) → −∞ as t → ∞

lower bound property: p⋆ ≥ bTν if ‖ATν‖∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i, j to the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x

(xTWx +
∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x − 1Tν

=

{

−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p⋆ ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W )1 gives bound p⋆ ≥ nλmin(W )
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Lagrange dual and conjugate function

minimize f0(x)
subject to Ax � b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(

f0(x) + (ATλ + CTν)Tx − bTλ − dTν
)

= −f∗
0 (−ATλ − CTν) − bTλ − dTν

• recall definition of conjugate f∗(y) = supx∈dom f(yTx − f(x))

• simplifies derivation of dual if conjugate of f0 is kown

example: entropy maximization

f0(x) =
n
∑

i=1

xi log xi, f∗
0 (y) =

n
∑

i=1

eyi−1

Duality 5–8



The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ � 0

• finds best lower bound on p⋆, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d⋆

• λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 5–5)

minimize cTx
subject to Ax = b

x � 0

maximize −bTν
subject to ATν + c � 0
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Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . , m, Ax = b

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(

(c + ATλ)Tx − bTλ
)

=

{

−bTλ ATλ + c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ + c = 0, λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(

xTPx + λT (Ax − b)
)

= −
1

4
λTAP−1ATλ − bTλ

dual problem

maximize −(1/4)λTAP−1ATλ − bTλ
subject to λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ always
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A nonconvex problem with strong duality

minimize xTAx + 2bTx
subject to xTx ≤ 1

A 6� 0, hence nonconvex

dual function: g(λ) = infx(xT (A + λI)x + 2bTx − λ)

• unbounded below if A + λI 6� 0 or if A + λI � 0 and b 6∈ R(A + λI)

• minimized by x = −(A + λI)†b otherwise: g(λ) = −bT (A + λI)†b − λ

dual problem and equivalent SDP:

maximize −bT (A + λI)†b − λ
subject to A + λI � 0

b ∈ R(A + λI)

maximize −t − λ

subject to

[

A + λI b
bT t

]

� 0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t + λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

• λu + t = g(λ) is (non-vertical) supporting hyperplane to G

• hyperplane intersects t-axis at t = g(λ)
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epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical
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Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(

f0(x) +

m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆
i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +

p
∑

i=1

ν⋆
i hi(x

⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . , m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ � 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . , m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1 max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆

i

1/ν⋆

xi

αi
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, ν)
subject to λ � 0

perturbed problem and its dual

min. f0(x)
s.t. fi(x) ≤ ui, i = 1, . . . , m

hi(x) = vi, i = 1, . . . , p

max. g(λ, ν) − uTλ − vTν
s.t. λ � 0

• x is primal variable; u, v are parameters

• p⋆(u, v) is optimal value as a function of u, v

• we are interested in information about p⋆(u, v) that we can obtain from
the solution of the unperturbed problem and its dual
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global sensitivity result

assume strong duality holds for unperturbed problem, and that λ⋆, ν⋆ are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

p⋆(u, v) ≥ g(λ⋆, ν⋆) − uTλ⋆ − vTν⋆

= p⋆(0, 0) − uTλ⋆ − vTν⋆

sensitivity interpretation

• if λ⋆
i large: p⋆ increases greatly if we tighten constraint i (ui < 0)

• if λ⋆
i small: p⋆ does not decrease much if we loosen constraint i (ui > 0)

• if ν⋆
i large and positive: p⋆ increases greatly if we take vi < 0;

if ν⋆
i large and negative: p⋆ increases greatly if we take vi > 0

• if ν⋆
i small and positive: p⋆ does not decrease much if we take vi > 0;

if ν⋆
i small and negative: p⋆ does not decrease much if we take vi < 0
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local sensitivity: if (in addition) p⋆(u, v) is differentiable at (0, 0), then

λ⋆
i = −

∂p⋆(0, 0)

∂ui
, ν⋆

i = −
∂p⋆(0, 0)

∂vi

proof (for λ⋆
i ): from global sensitivity result,

∂p⋆(0, 0)

∂ui
= lim

tց0

p⋆(tei, 0) − p⋆(0, 0)

t
≥ −λ⋆

i

∂p⋆(0, 0)

∂ui
= lim

tր0

p⋆(tei, 0) − p⋆(0, 0)

t
≤ −λ⋆

i

hence, equality

p⋆(u) for a problem with one (inequality)
constraint: u

p⋆(u)

p⋆(0) − λ⋆u

u = 0
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Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice-versa

• transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax + b)

• dual function is constant: g = infx L(x) = infx f0(Ax + b) = p⋆

• we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax + b − y = 0

maximize bTν − f∗
0 (ν)

subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y) − νTy + νTAx + bTν)

=

{

−f∗
0 (ν) + bTν ATν = 0

−∞ otherwise
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norm approximation problem: minimize ‖Ax − b‖

minimize ‖y‖
subject to y = Ax − b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖ + νTy − νTAx + bTν)

=

{

bTν + infy(‖y‖ + νTy) ATν = 0
−∞ otherwise

=

{

bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

(see page 5–4)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ‖ν‖∗ ≤ 1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 � x � 1

maximize −bTν − 1Tλ1 − 1Tλ2

subject to c + ATν + λ1 − λ2 = 0
λ1 � 0, λ2 � 0

reformulation with box constraints made implicit

minimize f0(x) =

{

cTx −1 � x � 1

∞ otherwise
subject to Ax = b

dual function

g(ν) = inf
−1�x�1

(cTx + νT (Ax − b))

= −bTν − ‖ATν + c‖1

dual problem: maximize −bTν − ‖ATν + c‖1
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Problems with generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . , m
hi(x) = 0, i = 1, . . . , p

�Ki
is generalized inequality on Rki

definitions are parallel to scalar case:

• Lagrange multiplier for fi(x) �Ki
0 is vector λi ∈ Rki

• Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m
∑

i=1

λT
i fi(x) +

p
∑

i=1

νihi(x)

• dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)

Duality 5–28



lower bound property: if λi �K∗
i

0, then g(λ1, . . . , λm, ν) ≤ p⋆

proof: if x̃ is feasible and λ �K∗
i

0, then

f0(x̃) ≥ f0(x̃) +

m
∑

i=1

λT
i fi(x̃) +

p
∑

i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ1, . . . , λm, ν)

dual problem

maximize g(λ1, . . . , λm, ν)
subject to λi �K∗

i
0, i = 1, . . . , m

• weak duality: p⋆ ≥ d⋆ always

• strong duality: p⋆ = d⋆ for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · · + xnFn � G

• Lagrange multiplier is matrix Z ∈ Sk

• Lagrangian L(x, Z) = cTx + tr (Z(x1F1 + · · · + xnFn − G))

• dual function

g(Z) = inf
x

L(x, Z) =

{

− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize − tr(GZ)
subject to Z � 0, tr(FiZ) + ci = 0, i = 1, . . . , n

p⋆ = d⋆ if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)
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