
Lecture 10: Approximate inference: Particle-based method s

• Types of approximate inference methods

• Sampling from a Bayesian network

– Forward sampling

– Rejection sampling

– Likelihood weighting

• More generally: Importance sampling
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Approximate inference methods

• Instead of computing (conditional) probabilities directly, compute

an approximately correct answer

• The answer only needs to be good enough to let us do the real

task (which is most often finding the most likely value for the

query, or decision making)

• ”Good enough” can be expressed in terms of:

– Absolute error : |p(Y |e)− p̂(Y |e)| ≤ ǫ

– Relative error : 1
1+ǫ
≤ p(Y |e)

p̂(Y |e)
≤ (1 + ǫ)

where Y are the query variables and the evidence variables E

have value e

• We will discuss this more later, as similar error measures are

used in learning
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Two classes of approximate inference methods

1. Particle-based methods : use the model to generate instances

(particles), from the distribution, then compute sufficient

statistics for the distribution

• A particle could have values for all variables, or only for the

ones that are necessary to answer the query (based on

conditional independence)

• The capacity to use the model to generate data is key for

probabilistic models (often called generative models ), not

only for inference but also to understand the model

2. Optimization-based (variational) methods : use exact

inference, but on a model which is simpler than the real model
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Particle-based methods

• How can particles (instances) be generated?

– Random sampling :

∗ Rejection sampling : Sample directly from the desired

distribution

∗ Likelihoood weighting : Sample from a different

distribution but then apply a correction

∗ Gibbs sampling : Sample from distributions that are

increasingly closer to the desired distribution

– Direct search : Deterministically generate particles so that

the cases forming most of the probability mass are covered

• If possible, only some of the variables are sampled
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Example: Sprinkler network
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Approximate the marginal probability p(W = 1)
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Main idea of forward (logic) sampling

• Traverse the network, in the direction of the arcs

• At each node, sample a value for the corresponding random

variable from the CPD

Constraint: Parents must already have values

• After we got N samples, count how many have the desired

value for the query variables, and divide by N (of course,

assuming discrete variables)
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Example: Forward sampling
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1. Sample C according to its probability distribution. Say C = 1.

2. Sample R according to p(R|C = 1). Say R = 1.

3. Sample S according to p(S|C = 1). Say S = 0.

4. Sample W according to p(W |R = 1, S = 0). Say W = 1.

Now we have a complete sample: 〈C = 1, R = 1, S = 0,W = 1〉

We repeat the steps above as much as needed.

January 24, 2007 7 COMP-526 Lecture 10

Example: Computing marginal probabilities from samples

Suppose we generate N samples using the above technique. How
do we estimate p(W = 1)?

p(W = 1) ≈
N(W = 1)

N
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Analyzing the error

• We would like to know how many particles we need to generate

in order to get a good approximation of the marginal probability

p(Y = y).

• First tool: Hoeffding bound : Given a sequence of N

independent Bernoulli trials with probability of success θ, let

θ̂ = N(X=1)
N

. Then:

p(|θ − θ̂| > ǫ) ≤ 2e
−2Nǫ2

So, with very high probability, the absolute error is smaller than ǫ

• Second tool: Chernoff bound : Morevover, we have:

p(θ̂ > θ(1 + ǫ)) ≤ e
−Nθǫ2/3
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Applying the bounds to forward sampling

• Define an auxiliary random variable: X = 1 if we got a sample

with Y = y, X = 0 otherwise

• X is binomially distributed, and its probability is p(Y = y)!

• So the bounds can be applied

• For instance, if we want the probability of absolute error greater

than ǫ to be less than δ, we need:

N ≥
1

2ǫ2
ln

2

δ

• Similarly, for the relative error to be within ǫ, we need at least:

N ≥
3

p(Y = y)ǫ2
2

δ

This is pretty useless, as it depends on p(Y = y) (unknown)
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Example: Computing conditional probabilities

• How do we estimate p(W = 1|C = 1)?

p(W = 1|C = 1) =
p(C = 1, W = 1)

p(C = 1)

≈
N(C = 1, W = 1)

N

N

N(C = 1)
=

N(C = 1, W = 1)

N(C = 1)

Note that we did not use all the samples in this computation!

Only the samples in which C = 1 were used.
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Example: Computing conditional probabilities

• How do we estimate p(W = 1|C = 1)?

p(W = 1|C = 1) =
p(C = 1, W = 1)

p(C = 1)

≈
N(C = 1, W = 1)

N

N

N(C = 1)
=

N(C = 1, W = 1)

N(C = 1)

• Note that we did not use all the samples in this computation!

Only the samples in which C = 1 were used.

• One can show that if we have good estimates for both joint

probabilities, the estimate for the ratio will also be good.
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Rejection sampling

• Generate samples by forward sampling of the network:

– Let X1, . . . Xn be an ordering of the variables consistent

with the arc direction in the Bayes net structure, and so that

each variable comes after its parents

– For i = 1, . . . , n, sample Xi from p(Xi|Xπi
).

Note that all the parents of Xi are surely instantiated when we

get to sample Xi.

• Throw away the samples inconsistent with the evidence

Problem: If the evidence is unlikely, then we will throw away most

samples, and it takes a long time to gather enough data for a

reliable estimate.
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Rejection sampling

• Generate samples by forward sampling of the network:

– Let X1, . . . Xn be an ordering of the variables consistent

with the arc direction in the Bayes net structure, and so that

each variable comes after its parents

– For i = 1, . . . , n, sample Xi from p(Xi|πXi
).

Note that all the parents of Xi are surely instantiated when we

get to sample Xi.

• Throw away the samples inconsistent with the evidence

Problem: If the evidence is unlikely, then we will throw away most

samples, and it takes a long time to gather enough data for a

reliable estimate.
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Becoming more efficient

• Instead of generating samples in which C = 0 and throwing

them away, do not generate them at all!

• Idea: Fix the values for the evidence variables, sample only the

other variables. Then we can use all the samples.

• In our case, set C = 1, then:

1. Sample R from p(R|C = 1)

2. Sample S from p(S|C = 1)

3. Sample W from p(W |R, S)

Now we approximate p(W = 1|C = 1) ≈ N(W=1)
N
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Downstream evidence

Suppose we want to compute p(C|W = 1). We fix W = 1 and we

need to sample C, R, S.

• We would like to sample R from p(R|W = 1).

But we do not have these probabilities! We could do arc

reversal on the network, but this is actually quite expensive.

• Idea: sample the network top-down like before, but fix the values

of the evidence variables.
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Example
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1. Sample C according to p(C). Say C = 0.

2. Sample R according to p(R|C = 0). Say R = 0

3. Sample S according to p(S|C = 0). Say S = 0.

4. W = 1 (since it is the evidence)

Is this a good instance?
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A simple case

• Consider a very simple network: X → Y .

• We want to compute p(X|Y = 1).

1. Sample X from p(X)

2. Set Y = 1

• Problem: These samples come from p(X), not p(X,Y = 1).

So we have:

N(X = 1, Y = 1)

N
≈ p(X = 1), not p(X = 1, Y = 1)
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A simple case (continued)

• To see the fix to this problem, let us consider how we would

compute p(X = 1, Y = 1) exactly:

p(X = 1, Y = 1) = p(Y = 1|X = 1)p(X = 1)

• Since our sample count approximates p(X = 1), all we have to

do is multiply the estimate by the weight p(Y = 1|X = 1).

• We do the same thing to estimate p(Y = 1, X = 0). Then we

can approximate the conditional as usual.

• This algorithm is called likelihood weighting
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Likelihood weighting

Let X1, . . . Xn be an ordering of the variables consistent with the

arc direction in the Bayes net structure

1. Repeat for i = 1, . . . , N times:

(a) w = 1

(b) For j = 1, . . . , n do:

• If Xj has been observed as evidence (Xj ∈ E),

w ← w · p(Xj = xj |Xπj
)

• Else sample Xj from its CPD, p(Xj |Xπj
)

2. p̂(Y = y|E = e) =
PN

i=1
wiδi(Y =y)

P

N
i=1

wi
where δi(Y = y) is an

indicator variable equal to 1 if Y = y in the ith sample.
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Importance sampling

Likelihood weighting is a special case of a more general procedure,

called importance sampling

• Suppose we want to estimate the expected value of a function f

depending on a random variable X drawn according to the

target probability distribution p(X).

• If we had N samples xi drawn from p(X), we could estimate

the expectation using the empirical mean:

Ep[f ] ≈
1

N

N
X

i=1

f(xi)

• But instead, we have only samples drawn according to a

different proposal or sampling distribution q(X).

• How can we do the estimation?
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Unnormalized importance sampling

• We do a simple trick:

Ep[f ] =
X

x

f(x)p(X = x)

=
X

x

f(x)q(X = x)
p(X = x)

q(X = x)
= Eq

»

f
p

q

–

• Only requirement: if p(x) > 0 then q(x) > 0

• So for an estimator, we should average each sample of the

function, f(xi) weighted by the ratio of its probability under the

target and the sampling distribution:

Ep[f ] ≈
1

N

N
X

i=1

f(xi)
p(xi)

q(xi)
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A problem

• The previous estimator makes the assumption that we know the

target distribution p. But this seems restrictive

• E.g., in a Markov network, we know unnormalized clique

potentials. These are proportional to p. But to compute p exactly

requires computing the partition function, which is expensive

• Let p′ = αp be known (α is an arbitrary constant) .

• In this case, just plugging p′ into the importance sampling

expectation directly does not work correctly:

Eq

»

f
p′

q

–

=
X

x

q(x)f(x)
p′(x)

q(x)
=

X

x

f(x)αp(x) = αEp [f ]
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A solution!

• The previous estimate is off by a factor of α. So if we knew α,

we could correct it.

• An interesting observation:

Eq

»

p′

q

–

=
X

x

q(x)
p′(x)

q(x)
=

X

x

αp(x) = α

Hence, we can divide the two expectations and get the correct

answer!

• If we estimate the expectations from samples, we get:

Ep [f ] ≈

Pn
i=1 f(xi)

p′(xi)
q(xi)

Pn
i=1

p′(xi)
q(xi)

This is called normalized importance sampling

January 24, 2007 24 COMP-526 Lecture 10



Properties of statistical estimators

• Suppose that we have a data sample of size N

• If, for any N , the expected value of the estimator (over multiple

samples drawn from the same distribution) is correct, the

estimator is called unbiased

• If, in the limit of N →∞, the estimator has the correct expected

value, it is called consistent

• The variance of the estimator tells us how much variability to

expect based on different samples.

Recall that for a random variable, the variance is defined as:

E
ˆ

(X − E[X])2
˜

= E[X2]− (E[X])2
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Bias and variance of importance sampling

• Unnormalized importance sampling is unbiased, consistent, but

has potentially high variance

• The variance depends on how different the target and proposal

distributions are, as well as on the function f

• The normalized importance sampling estimator is biased but

consistent

• The theoretical variance is not comparable to the unnormalized

estimator, but in practice it tends to be much lower

• The bias-variance trade-off is a constant issue in statistical

estimation and machine learning
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Applying importance sampling to approximate inference

• Suppose we are interested in a set of variables Z having

particular values z (because they are evidence or query

variables)

• Consider a mutilated Bayesian network in which the nodes Z

have no parents and are just set to the desired value. All other

nodes stay the same

• This will be the proposal distribution

• It is easy to show that the weights computed by likelihood

weighting are exactly importance sampling weights under this

proposal distribution (and the desired target)

• The function f is just the indicator function

January 24, 2007 27 COMP-526 Lecture 10

Additional algorithms

• Computing the marginal probability p(Z = z)

• Normalized likelihood weighting (based on normalized

importance sampling)

• Ratio likelihood weighting (similar, but we set the values for the

query too, and usually use different numbers of samples for the

top and the bottom estimator)

• In all cases, if the values of the variables are unusual, we may

need a lot of samples to get a good estimate
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