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Motivation
(the same old story)

• Easy to rank examples in order of class-
membership likelihood

• Hard (or at least not trivial) to turn these 
rankings into probabilities of class-
membership

• Goal: find P(c | x): the probability of 
example x belonging to class c
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Talking Points

From ranking scores:
• “Obtaining accurate two-class probability 

estimates”
– Isotonic regression

• “Obtaining accurate multi-class probability 
estimates”
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“Obtaining accurate two-class 
probability estimates”

• Problem:

Interpreting re-scaled SVM scores as probabilities.  (Note: rescaled based 
on the maximum and minimum seen distances from the hyperplane)
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Platt’s Method

• Fit to a sigmoid:
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Naïve Bayes

• Doesn’t work:

Platt’s method applied to Naïve Bayes.
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Possible Solutions

• Binning
– How many bins?
– Why does it have to be a fixed number?

• Better method: isotonic (non decreasing) 
regression
– Binning with variable number of bins
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Isotonic Regression

• Pair(Pool)-Adjacent Violators (PAV)

{xi}i=1
N : training examples

g(xi) : value of the function to be learned via IR
g*: the isotonic regression
If g is already isotonic, g*= g. Otherwise, ∃ i s.t. g(xi−1)> g(xi) (i.e. decreasing).
In this case, xi−1 and xi are called pair(pool)-adjacent violators.
This is solved by replacing both xi−1 and xi by their average.

If this new set of examples is isotonic, g*(xi−1)= g*(xi)=
g*(xi−1)+ g*(xi)

2
, and g*(x j)= g(x j).

This process is repeated until an isotonic set of values is obtained.

Make the set of training examples 
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Isotonic Regression

• Making use of the PAV algorithm:
– Sort examples according to score
– Let g(xi)=0 if xi is negative, 1 if xi is positive
– Run PAV algorithm on g to get g*
– g* is the isotonic regression

• Usually has pretty good results

Typically, this results in 0/1 probabilities if the sorted scores rank examples 
perfectly, baseline in the random case, and something pretty effective 
otherwise.
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Isotonic Regression
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“Obtaining accurate multi-class 
probability estimates”

• Problem:
– Calibration methods (Platt’s method, isotonic 

regression, etc.) are designed for two-class 
problems

Because “[because] we are mapping between one-dimensional spaces […] it 
is easy to impose sensible restrictions on the shape of the function being 
learned” (bottom of page 3, section 4)
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“Obtaining accurate multi-class 
probability estimates”

• Solution:
– Break the problem into many binary problems, 

calibrate them seperately, and then combine 
the probabilities

• Two ways:
– One-against-all: each class one by one
– All-pairs: try each possible “pair” of classes

One against all: for each class, the problem is predicting “class c” or “not 
class c (I.e. some other class)”
All pairs: try each possible combination (pair) of classes
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How do we “combine” the 
probabilities?

• One-against-all: since we have P(ci | x) for 
all ci, just normalize the probabilities to 1.

• What about for all-pairs?
– Construct a code matrix (a generalization of 

error-correcting output coding).
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Code Matrix

-1-10c3

+10-1c2

0+1+1c1

b3b2b1

b’s represent various binary problems (all-pairs)
c’s represent various classes
+1 indicates that the corresponding c is the positive class in the 
corresponding binary problem b
-1 … negative class
0 class not used in b
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Combining the Probabilities

• Where I and J are the sets of classes 
corresponding to M(-, b) = 1 and M(-, b) = -1, 
respectively

Essentially, rb(x) is equal to the probability of the positive class divided by 
the combined probabilities of the positive and negative classes (which 
should always be 1, right?)  I only include this because it is included in the 
paper.
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Combining the Probabilities

• There are two methods for solving this 
problem:
– Least-squares method with non-negativity 

constraints
– Coupling, an iterative algorithm for minimizing 

log-loss instead of squared error

These methods are not explained in the paper, but references are given.
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Results (two-class)

Major things to note: PAV (I.e. isotonic regression) works in a way 
comparable to Platt’s method on SVMs and better for NB.
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Results (multi-class)

Major things to note: Normalization is very close in performance to least-
squares and coupling.  PAV (I.e. isotonic regression) does help boost 
performance.
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Conclusion

• Isotonic regression works for various 
models (i.e. SVMs and NB) in two-class 
problems

• One-against-all with normalized 
probabilities works well for multi-class 
problems, although using some of the 
more sophisticated methods might perform 
slightly better


