Transforming Classifier Scores into Accurate Multiclass Probability Estimates

Bianca Zadrozny & Charles Elkan

Presenter: Myle Ott

Motivation (the same old story)

- Easy to rank examples in order of classmembership likelihood
- Hard (or at least not trivial) to turn these rankings into probabilities of classmembership
- Goal: find P(c | x): the probability of example x belonging to class c

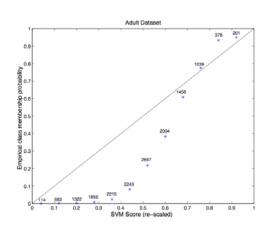
Talking Points

From ranking scores:

- "Obtaining accurate two-class probability estimates"
 - Isotonic regression
- "Obtaining accurate multi-class probability estimates"

"Obtaining accurate two-class probability estimates"

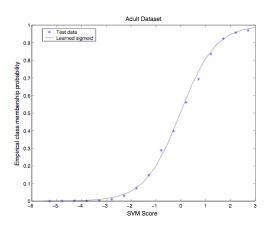
• Problem:

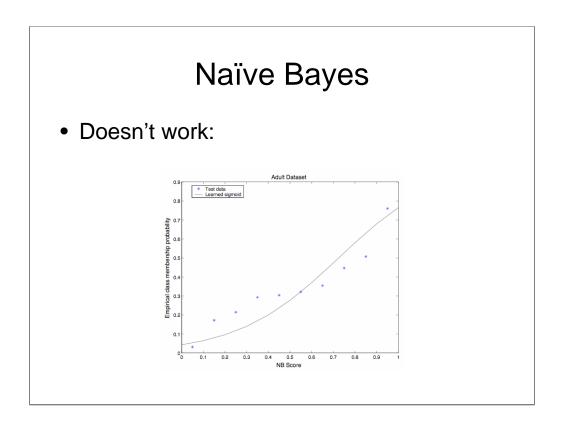


Interpreting re-scaled SVM scores as probabilities. (Note: rescaled based on the maximum and minimum seen distances from the hyperplane)

Platt's Method

• Fit to a sigmoid:





Platt's method applied to Naïve Bayes.

Possible Solutions

- Binning
 - How many bins?
 - Why does it have to be a fixed number?
- Better method: isotonic (non decreasing) regression
 - Binning with variable number of bins

Isotonic Regression

Pair(Pool)-Adjacent Violators (PAV)

 $\{x_i\}_{i=1}^N$: training examples

 $g(x_i)$: value of the function to be learned via IR

g*: the isotonic regression

If g is already isotonig*=g. Otherwise \exists i s.t. $g(x_{i-1}) > g(x_i)$ (i.e. decreasing).

In this case x_{i-1} and x_i are called pair (pool) adjacent violators.

This is solved by replacing both and x_i by their average.

If this new set of examples is isotogrit(x_{i-1}) = $g^*(x_i) = \frac{g^*(x_{i-1}) + g^*(x_i)}{2}$, and $g^*(x_j) = g(x_j)$.

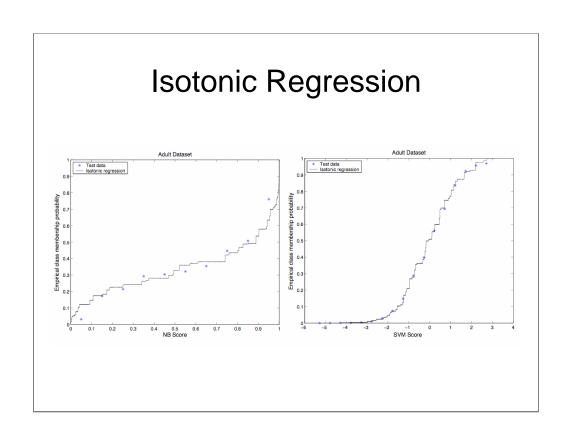
This process is repeated until an isotonic set of values is obtained.

Make the set of training examples

Isotonic Regression

- Making use of the PAV algorithm:
 - Sort examples according to score
 - Let $g(x_i)=0$ if x_i is negative, 1 if x_i is positive
 - Run PAV algorithm on g to get g^*
 - $-g^*$ is the isotonic regression
- Usually has pretty good results□

Typically, this results in 0/1 probabilities if the sorted scores rank examples perfectly, baseline in the random case, and something pretty effective otherwise.



"Obtaining accurate multi-class probability estimates"

• Problem:

 Calibration methods (Platt's method, isotonic regression, etc.) are designed for two-class problems

Because "[because] we are mapping between one-dimensional spaces [...] it is easy to impose sensible restrictions on the shape of the function being learned" (bottom of page 3, section 4)

"Obtaining accurate multi-class probability estimates"

• Solution:

 Break the problem into many binary problems, calibrate them seperately, and then combine the probabilities

Two ways:

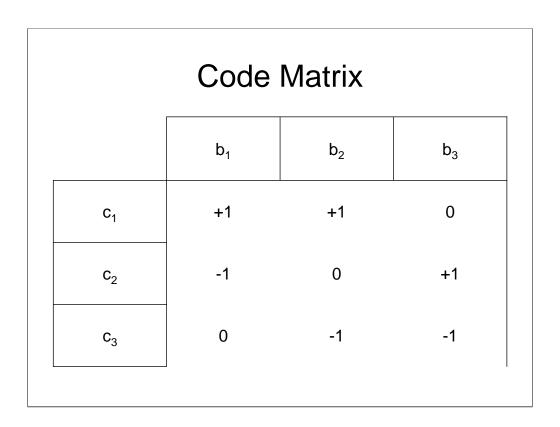
- One-against-all: each class one by one
- All-pairs: try each possible "pair" of classes

One against all: for each class, the problem is predicting "class c" or "not class c (l.e. some other class)"

All pairs: try each possible combination (pair) of classes

How do we "combine" the probabilities?

- One-against-all: since we have P(c_i | x) for all c_i, just normalize the probabilities to 1.
- What about for all-pairs?
 - Construct a code matrix (a generalization of error-correcting output coding).



b's represent various binary problems (all-pairs)

c's represent various classes

- +1 indicates that the corresponding c is the positive class in the corresponding binary problem b
- -1 ... negative class
- 0 class not used in b

Combining the Probabilities

$$r_b(x) = P(\bigvee_{c \in I} c | \bigvee_{c \in I \cup J} c, x) = \frac{\sum_{c \in I} P(c|x)}{\sum_{c \in I \cup J} P(c|x)}$$

 Where I and J are the sets of classes corresponding to M(-, b) = 1 and M(-, b) = -1, respectively

Essentially, rb(x) is equal to the probability of the positive class divided by the combined probabilities of the positive and negative classes (which should always be 1, right?) I only include this because it is included in the paper.

Combining the Probabilities

- There are two methods for solving this problem:
 - Least-squares method with non-negativity constraints
 - Coupling, an iterative algorithm for minimizing log-loss instead of squared error

These methods are not explained in the paper, but references are given.

Results (two-class)

	MSE		Error Rate	
Method	Training	Test	Training	Test
NB	0.25112	0.25198	0.17100	0.17321
Sigmoid NB	0.21530	0.21515	0.15270	0.15190
PAV NB	0.20312	0.20452	0.14665	0.14831
SVM	0.28719	0.28684	0.15190	0.14968
Sigmoid SVM	0.20980	0.20962	0.15156	0.14993
PAV SVM	0.20815	0.20924	0.15115	0.15113

Table 3: MSE and error rate on the Adult dataset.

Major things to note: PAV (I.e. isotonic regression) works in a way comparable to Platt's method on SVMs and better for NB.

Results (multi-class)

Method	MSE	Error Rate
NB Normalization	0.0326	0.1672
NB Least-Squares	0.0319	0.1672
NB Coupling	0.0304	0.1715
PAV NB Normalization	0.0241	0.1498
PAV NB Least-Squares	0.0260	0.1498
PAV NB Coupling	0.0260	0.1512
BNB Normalization	0.0163	0.0963
BNB Least-Squares	0.0164	0.0958
BNB Coupling	0.0160	0.1023
PAV BNB Normalization	0.0150	0.0946
PAV BNB Least-Squares	0.0150	0.0946
PAV BNB Coupling	0.0149	0.0935

 Table 4: MSE and error rate on Pendigits (test set)

Major things to note: Normalization is very close in performance to least-squares and coupling. PAV (I.e. isotonic regression) does help boost performance.

Conclusion

- Isotonic regression works for various models (i.e. SVMs and NB) in two-class problems
- One-against-all with normalized probabilities works well for multi-class problems, although using some of the more sophisticated methods might perform slightly better