Bias/Variance Tradeoff

Preliminaries

$$\overline{A+B} = \overline{A} + \overline{B}$$

$$VAR(A) = \langle (A_i \square \overline{A})^2 \rangle_i$$
 mean squared error to the mean, variation of samples about mean

If A and B independent (not correlated):

$$VAR(A + B) = VAR(A) + VAR(B)$$

Supervised Learning Notation

 $x_i = d$ - dimensional vector of input attributes

T(x) = true, unknown ideal function mapping inputs to targets

 $t_i = T(x_i)$ = ideal (no noise) target for input vector x_i

 $T'(x_i) = T(x_i) + noise^2$ (because god is perverse!)

 $t_i' = T(x_i) + noise^2 = \text{target with noise for input } x_i$

D = sample of N points from distribution p(t,x)

L(x,D) = function learned from train set D that predicts target $y_i = t_i' = L(x_i,D)$ for input x_i

Model Loss (Error)

• Squared loss of model on test case i:

$$(Learn(x_i, D) \square T \square th(x_i))^2$$

• Expected prediction error (total model variance):

$$\left\langle \left(Learn(x,D) \prod T \operatorname{Futh}(x)\right)^{2}\right\rangle_{D}$$

• Mean squared error on a test set is an estimate of this expected error for one sample D

Sources of Squared Error

- training sample D
- noise in targets or input attributes
- bias (model mismatch)
- randomness in learning algorithm
 - neural net weight initialization
- randomized subsetting of train set:
 - cross validation, train and early stopping set

Bias/Variance Decomposition

$$\left\langle \left(L(x,D) \prod T[]x)\right)^2 \right\rangle_D = Noise^2 + Bias^2 + Variance$$

 $Noise^2$ = lower bound on performance

 $Bias^2$ = (expected error due to model mismatch)²

Variance = variation due to train sample and randomization

Bias/Variance Decomposition

$$\left\langle \left(L(x,D) \prod T \left[x \right] \right)^2 \right\rangle_D = Noise^2 + Bias^2 + Variance$$

Noise² =
$$\langle (T'(x) - T(x))^2 \rangle$$

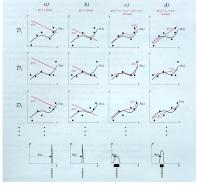
= Bayes Optimal Rate

$$Bias^{2} = \left(\left\langle L(x, D) \prod T(x) \right\rangle_{D} \right)^{2}$$

$$Variance = \left\langle \left(L(x, D) \prod \left\langle L(x, D) \right\rangle_{D} \right)^{2} \right\rangle_{D}$$

Bias/Variance Tradeoff

- (bias²+variance) is what counts for prediction
- Often:
 - low bias => high variance
 - low variance => high bias
- Tradeoff:
 - bias² vs. variance

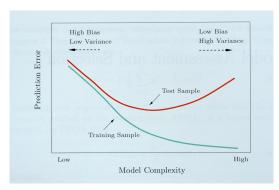


Duda, Hart, Stork "Pattern Classification", 2nd edition, 2001

Bias²

- bias² ≈ 0
 - linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
 - ANN with many hidden units trained to completion
- bias $^2 >> 0$
 - constant function
 - linear regression applied to very non-linear data
 - ANN with few hidden units applied to non-linear data

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Bias²

- to decrease bias²
 - add more parameters to model
 - train model further (towards overfitting)
 - use larger/richer model class
- to increase bias²
 - reduce model complexity
 - use smaller model class

Variance

- Variance ≈ 0
 - constant function
 - model independent of training data
 - model depends on stable measures of data
 - mean
 - median
- Variance >> 0

Bias²

- high degree polynomial
- ANN with many hidden units trained to completion

Bias/Variance Tradeoff

Variance

HIGH MEDIUM LOW 1 2 3 WO 4 5 6 HDH 7 8 9

Variance

- to decrease variance
 - use simpler models (fewer parameters)
 - eliminate outliers before fitting model
 - train model less (early stopping)
 - more pruning
 - use larger training set
- to increase variance
 - use larger/richer model class
 - use more complex models
 - train model further

Measuring Bias and Variance

$$MSE = \left\langle \left(L(x,D) \prod T \boxed{x} \right)^2 \right\rangle_D = Noise^2 + Bias^2 + Variance$$

- Random train set (fixed size)
- Random test set (any size)
- Train on train
- Compute variance of error on test set
- Repeat many times (use cross validation)
- This is the usual error measure reported

Measuring Bias and Variance

$$\left\langle \left(L(x,D) \, \big| \, T[]x)\right)^2\right\rangle_D = Noise^2 + Bias^2 + \left\langle \left(L(x,D) \, \big| \, \left\langle L(x,D) \, \right\rangle_D\right)^2\right\rangle_D$$

- Random test set (preferably large)
- Random train set (fixed size)
- Train on train
- Evaluate on test, saving predictions
- Resample train set, retrain, test on original test set
- Average predictions on test sets
- Calculate variance of predictions to averages

Measuring Bias and Variance

- Calculate MSE usual way
- Calculate average test set predictions by averaging predictions from many train samples
- Calculate variance of predictions: $\langle (y \square \overline{y})^2 \rangle$

$$MSE = Bias^2 + Variance$$

Measuring Bias and Variance

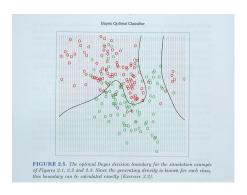
$$Noise^2 + Bias^2 = \langle (L(x,D) \square T \square x) \rangle^2 \rangle \square Variance$$

Noise² =
$$\langle (T'(x) - T(x))^2 \rangle$$

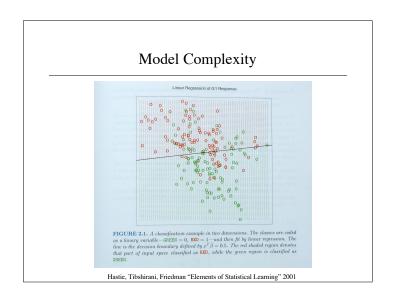
Bias² = $(\langle L(x,D) \Box T(x) \rangle_D)^2$

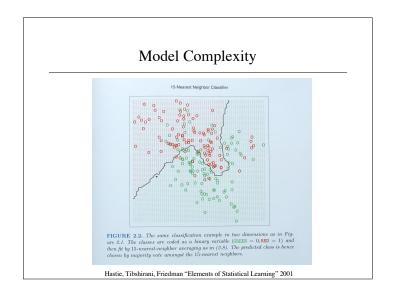
- Can't measure bias² separate from noise²
- Lump (bias² + noise²) together
- Calculate by subtracting variance from MSE (mean squared error)

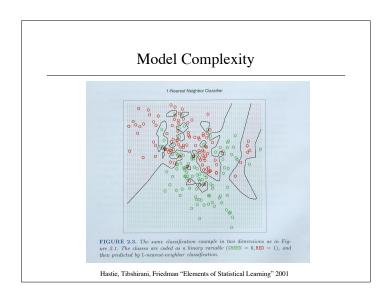
Model Complexity

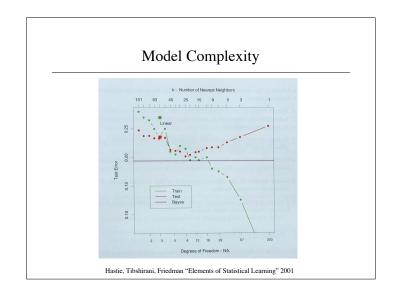


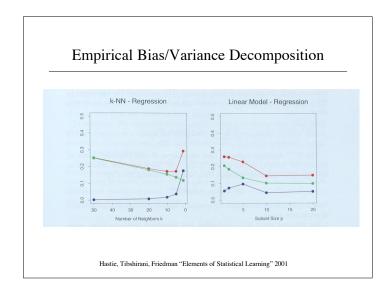
Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

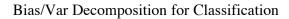




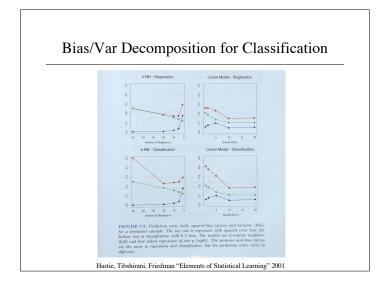








- classification is 0/1 loss, not squared loss
- B/V decomposition not so straightforward
- active research (3 papers = 3 different approaches)



So What?

- Reduce one without increasing the other?
- Better understand algorithms?
- Design better algorithms?

So What?

- Reduce one without increasing the other?
- Better understand algorithms?
- Design better algorithms?

Yes!

Better Understand Algorithms

Bias/Variance Decomposition for KNN

$$MSE = Noise^2 + Bias^2 + Variance$$

$$= Noise^{2} + \frac{\prod_{NN-1}^{k} T[[x_{NN}]]}{\prod_{NN-1}^{k} T[[x]]} + \frac{Noise^{2}}{k}$$

• Note: This simplified analysis assumes points x_i are fixed (no variation from moving neighbors).

Better Algorithms by Reducing Variance

Reduce Variance Without Increasing Bias?

• Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

- Average models to reduce model variance
- One problem:
 - only one train set
 - where do multiple models come from?

Bagging

• Best case:

$$Var(Bagging(L(x,D))) = \frac{Variance(L(x,D))}{N}$$

- In practice:
 - models are correlated, so reduction is smaller than 1/N
 - variance of models trained on fewer training cases usually somewhat larger
 - stable learning methods have low variance to begin with, so bagging may not help much

Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Bootstrap Sample:
 - draw sample of size IDI with replacement from D

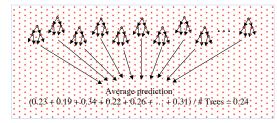
Train $L_i(BootstrapSample_i(D))$

Regression: $L_{bagging} = \overline{L_i}$

Classification: $L_{bagging} = Plurality(L_i)$

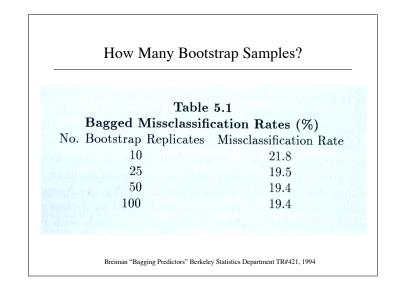
Bagged Decision Trees

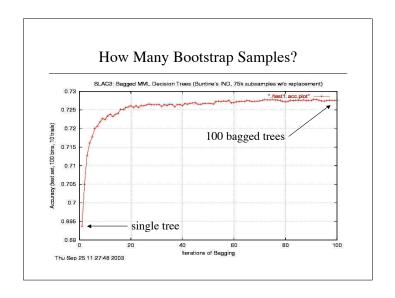
- Draw 100 bootstrap samples of data
- Train trees on each sample -> 100 trees
- Un-weighted average prediction of trees

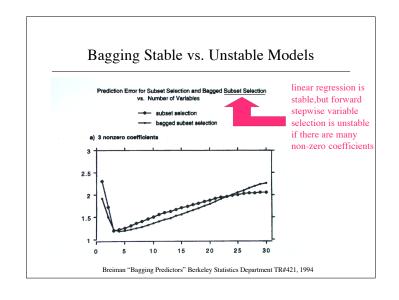


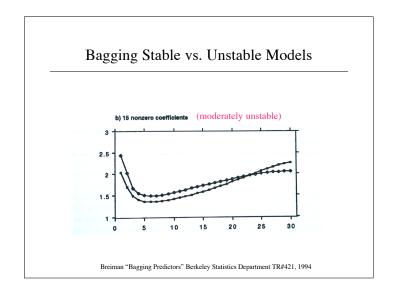
· Highly under-rated!

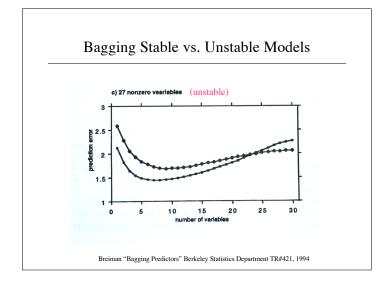
Ba	gging	Resu	lts
	classifi	cation I	Rates (Percent)
Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	22%
soybean	14.5	10.6	27%











Can Bagging Hurt?

Can Bagging Hurt?

- Each base classifier is trained on less data
 - Only about 63.2% of the data points are in any bootstrap sample
- However the final model has seen all the data
 - On average a point will be in >50% of the bootstrap samples

Reduce Bias² and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?
- Yes:

Boosting

The Potential Power of Weak Learning

Train Case T(x) (true y)	C ₁	C_2	C_3	C ₄	C_5
Weak L ₁ Weak L ₂ Weak L ₃ Weak L ₄	1 1 0 0	0 1 0 0	1 0 0 1	0 1 1 1	0 1 1 0
 Weak L _n	1	1	0		0
<weak l<sub="">n></weak>	1	0	0	1	0

Boosting

- Freund & Schapire:
 - theory for "weak learners" in late 80's
- Weak Learner: performance on *any* train set is slightly better than chance prediction
- intended to answer a theoretical question, not as a practical way to improve learning
- tested in mid 90's using not-so-weak learners
- works anyway!

Boosting

- Weight all training samples equally
- Train model on train set
- Compute error of model on train set
- Increase weights on train cases model gets wrong
- Train new model on re-weighted train set
- Re-compute errors on weighted train set
- Increase weights again on cases model gets wrong
- Repeat until tired (100+ iterations)
- Final model: weighted prediction of each model

Boosting Algorithm AdaBoost.M1 Input: sequence of m examples $\langle (x_1,y_1),\dots,(x_m,y_m)\rangle$ with labels $y_t\in Y=\{1,\dots,k\}$ weak learning algorithm WeakLearn integer T specifying number of iterations Initialization Initialize $D_1(i) = 1/m$ for all i. **Do for** t = 1, 2, ..., T: 1. Call **WeakLearn**, providing it with the distribution D_t . 2. Get back a hypothesis $h_t: X \to Y$. 3. Calculate the error of h_t : $\epsilon_t = \sum_{i=1}^{n} D_t(i)$. Iteration If $\epsilon_t > 1/2$, then set T = t - 1 and abort loop. 4. Set $\beta_t = \epsilon_t/(1 - \epsilon_t)$. 5. Update distribution D_t : $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$ where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution). Output the final hypothesis: Final Model $h_{fin}(x) = \arg\max_{y \in Y} \sum_{t: h_t(x) = y} \log \frac{1}{\beta_t}.$

Boosting: Initialization

Algorithm AdaBoost.M1
Input: sequence of m examples $\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle$ with labels $y_i \in Y = \{1, \ldots, k\}$ weak learning algorithm WeakLearn integer T specifying number of iterations
Initialize $D_1(i) = 1/m$ for all i.

Boosting: Iteration

```
Do for t = 1, 2, ..., T:

1. Call WeakLearn, providing it with the distribution D_t.

2. Get back a hypothesis h_t : X \to Y.

3. Calculate the error of h_t: \epsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i).

If \epsilon_t > 1/2, then set T = t - 1 and abort loop.

4. Set \beta_t = \epsilon_t/(1 - \epsilon_t).

5. Update distribution D_t:

D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}

where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).
```

Weight updates

- Weights for incorrect instances are multiplied by 1/(2Error_i)
 - Small train set errors cause weights to grow by several orders of magnitude
- Total weight of misclassified examples is 0.5
- Total weight of correctly classified examples is 0.5

Boosting: Prediction

Output the final hypothesis:

$$h_{fin}(x) = \arg\max_{y \in Y} \sum_{t: h_t(x)=y} \log \frac{1}{\beta_t}$$

Boosting Theorem

Then the following upper bound holds on the error of the final hypothesis $h_{\rm fin}$:

$$\frac{|\{i: h_{\mathit{fin}}(x_i) \neq y_i\}|}{m} \leq \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2} \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right)$$

- training error of final weighted hypothesis is small
- does not say anything about error on test set
- if weak hypotheses are simple and T not too large, err(train) err(test) can be bounded

Reweighting vs Resampling

- Example weights might be harder to deal with
 - Some learning methods can't use weights on examples
 - Many common packages don't support weighs on the train
- We can resample instead:
 - Draw a bootstrap sample from the data with the probability of drawing each example is proportional to it's weight
- Reweighting usually works better but resampling is easier to implement

Boosting Theorem

Then the following upper bound holds on the error of the final hypothesis h_{fin} :

$$\frac{|\{i: h_{fin}(x_i) \neq y_i\}|}{m} \leq \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2} \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right)$$

- bound on training error is weak
- but bound is correct qualitatively
- performs better in practice than theory suggests!
- theoretical understanding is not correct/sufficient

AdaBoost.M1 can't handle hypothesis with $e_t \ge 0.5$

Algorithm AdaBoost.M2 Input: sequence of
$$m$$
 examples $((x_1,y_1),\dots,(x_m,y_m))$ with labels $y_i \in Y = \{1,\dots,k\}$ weak learning algorithm WeakLearn integer T specifying number of iterations Let $B = \{(i,y): i \in \{1,\dots,m\}, y \neq y_i\}$ Initialize $D_1(i,y) = 1/|B|$ for $(i,y) \in B$. Do for $t = 1,2,\dots,T$

1. Call WeakLearn, providing it with mislabel distribution D_t .

2. Get back a hypothesis $h_t: X \times Y \to [0,1]$.

3. Calculate the pseudo-loss of h_i :
$$e_t = \frac{1}{2} \sum_{(i,y) \in B} D_t(i,y) (1-h_t(x_i,y_i) + h_t(x_i,y)).$$

4. Set $\beta_t = \epsilon_t/(1-\epsilon_t)$.

5. Update D_t :
$$D_{t+1}(i,y) = \frac{D_t(i,y)}{Z_t}, \beta_t^{(1/2)(1+h_t(x_i,y_i)-h_t(x_i,y))}$$
 where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:
$$h_{\beta n}(x) = \arg\max_{v \in Y} \sum_{t=1}^{T} \left(\log\frac{1}{\beta_t}\right) h_t(x,y).$$

AdaBoost.M2

Do for t = 1, 2, ..., T

- 1. Call **WeakLearn**, providing it with mislabel distribution D_t .
- 2. Get back a hypothesis $h_t: X \times Y \to [0, 1]$.
- 3. Calculate the pseudo-loss of h_t :

$$\epsilon_t = \frac{1}{2} \sum_{(i,y) \in B} D_t(i,y) (1 - h_t(x_i, y_i) + h_t(x_i, y)).$$

- 4. Set $\beta_t = \epsilon_t/(1-\epsilon_t)$.
- 5. Update D_t :

$$D_{t+1}(i,y) = \frac{D_t(i,y)}{Z_t} \cdot \beta_t^{(1/2)(1+h_t(x_i,y_i)-h_t(x_i,y))}$$

where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

AdaBoost.M2

Output the final hypothesis:

$$h_{\mathit{fin}}(x) = \arg\max_{y \in Y} \sum_{t=1}^{T} \left(\log \frac{1}{\beta_t}\right) h_t(x, y).$$

AdaBoost.M2

$$\frac{|\{i:h_{\mathit{fin}}(x_i)\neq y_i\}|}{m} \leq (k-1)\prod_{t=1}^T \sqrt{1-4\gamma_t^2}$$

$$\leq (k-1)\exp\left(-2\sum_{t=1}^T \gamma_t^2\right)$$
where k is the number of classes.

Boosting vs. Bagging

- On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance.
- The weights grow exponentially.
- Bagging is easier to parallelize.

Boosting vs. Bagging

- Bagging doesn't work so well with stable models. Boosting might still help.
- Boosting might hurt performance on noisy datasets. Bagging doesn't have this problem
- In practice bagging almost always helps.

Boosting Theorem

• Suppose weak learning method WeakLearn, called by AdaBoost, generates hypotheses with errors e₁,...,e_T. Assume each e_t □ 0.5, and let □=0.5 - e_t.

Then the following upper bound holds on the error of the final hypothesis $h_{\rm fin}$:

$$\frac{|\{i: h_{fin}(x_i) \neq y_i\}|}{m} \leq \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2} \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right)$$