- ightharpoonup Roughly speaking, they have operations \oplus and \otimes such that
 - ▶ $Pl(U \cup V) = Pl(U) \oplus Pl(V)$ if $U \cap V = \emptyset$
 - ▶ $Pl(U_1 \cap U_2 \mid U_3) = Pl(U_1 \mid U_2 \cap U_3) \otimes Pl(U_2 \mid U_3)$ if $U_2 \cap U_3 \in \mathcal{F}', U_1, U_2, U_3 \in \mathcal{F}.$

- ▶ Roughly speaking, they have operations ⊕ and ⊗ such that
 - ▶ $Pl(U \cup V) = Pl(U) \oplus Pl(V)$ if $U \cap V = \emptyset$
 - ▶ $Pl(U_1 \cap U_2 \mid U_3) = Pl(U_1 \mid U_2 \cap U_3) \otimes Pl(U_2 \mid U_3)$ if $U_2 \cap U_3 \in \mathcal{F}', U_1, U_2, U_3 \in \mathcal{F}.$

Definition: If Pl is algebraic, then U and V do not interact given V' if $\operatorname{Pl}(U \cap V \mid V') = \operatorname{Pl}(U \mid V') \otimes \operatorname{Pl}(V \mid V')$ (if $V' \in \mathcal{F}'$).

- ▶ Roughly speaking, they have operations ⊕ and ⊗ such that
 - ▶ $Pl(U \cup V) = Pl(U) \oplus Pl(V)$ if $U \cap V = \emptyset$
 - ▶ $Pl(U_1 \cap U_2 \mid U_3) = Pl(U_1 \mid U_2 \cap U_3) \otimes Pl(U_2 \mid U_3)$ if $U_2 \cap U_3 \in \mathcal{F}', U_1, U_2, U_3 \in \mathcal{F}.$

Definition: If Pl is algebraic, then U and V do not interact given V' if $Pl(U \cap V \mid V') = Pl(U \mid V') \otimes Pl(V \mid V')$ (if $V' \in \mathcal{F}'$).

Lemma: If $(W, \mathcal{F}, \mathcal{F}', \operatorname{Pl})$ is an algebraic cps and either $U \cap V' \in \mathcal{F}'$ or $V \cap V' \in \mathcal{F}'$, then $I_{\operatorname{Pl}}(U, V \mid V')$ implies U and V do not interact.

- ▶ Roughly speaking, they have operations ⊕ and ⊗ such that
 - ▶ $Pl(U \cup V) = Pl(U) \oplus Pl(V)$ if $U \cap V = \emptyset$
 - ▶ $Pl(U_1 \cap U_2 \mid U_3) = Pl(U_1 \mid U_2 \cap U_3) \otimes Pl(U_2 \mid U_3)$ if $U_2 \cap U_3 \in \mathcal{F}', U_1, U_2, U_3 \in \mathcal{F}.$

Definition: If Pl is algebraic, then U and V do not interact given V' if $Pl(U \cap V \mid V') = Pl(U \mid V') \otimes Pl(V \mid V')$ (if $V' \in \mathcal{F}'$).

Lemma: If $(W, \mathcal{F}, \mathcal{F}', \operatorname{Pl})$ is an algebraic cps and either $U \cap V' \in \mathcal{F}'$ or $V \cap V' \in \mathcal{F}'$, then $I_{\operatorname{Pl}}(U, V \mid V')$ implies U and V do not interact.

The converse is not necessarily true.

- ▶ There is an example in the book using possibility measures.
- We can an extra condition to get the converse

Bottom line: we can separate out the two notions of independence using algebraic plausibility measures.

Properties of independence for RVs

Recall:

```
\begin{split} & \text{CIRV1}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{Y},\mathbf{X}\mid\mathbf{Z}). \\ & \text{CIRV2}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}). \\ & \text{CIRV3}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Y}'\cup\mathbf{Z}). \\ & \text{CIRV4}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}) \ \text{and} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}'\mid\mathbf{Y}\cup\mathbf{Z}), \ \text{then} \\ & I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}). \\ & \text{CIRV5}[\mu]. \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Z}\mid\mathbf{Z}). \end{split}
```

Properties of independence for RVs

Recall:

```
\begin{split} & \text{CIRV1}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{Y},\mathbf{X}\mid\mathbf{Z}). \\ & \text{CIRV2}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}). \\ & \text{CIRV3}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Y}'\cup\mathbf{Z}). \\ & \text{CIRV4}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}) \ \text{and} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}'\mid\mathbf{Y}\cup\mathbf{Z}), \ \text{then} \\ & I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}). \\ & \text{CIRV5}[\mu]. \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Z}\mid\mathbf{Z}). \end{split}
```

Theorem: These properties hold for all probability measures μ .

Properties of independence for RVs

Recall:

```
\begin{split} & \text{CIRV1}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{Y},\mathbf{X}\mid\mathbf{Z}). \\ & \text{CIRV2}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}). \\ & \text{CIRV3}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}), \ \text{then} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Y}'\cup\mathbf{Z}). \\ & \text{CIRV4}[\mu]. \ \text{If} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}) \ \text{and} \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}'\mid\mathbf{Y}\cup\mathbf{Z}), \ \text{then} \\ & I_{\mu}^{rv}(\mathbf{X},\mathbf{Y}\cup\mathbf{Y}'\mid\mathbf{Z}). \\ & \text{CIRV5}[\mu]. \ I_{\mu}^{rv}(\mathbf{X},\mathbf{Z}\mid\mathbf{Z}). \end{split}
```

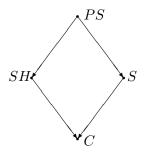
Theorem: These properties hold for all probability measures μ .

More general theorem:

Theorem: If Pl is an algebraic plausibility measure, then these properties continue to hold if we replace I_{μ}^{rv} with I_{Pl}^{rv} .

Qualitative Bayesian Networks

Recall: A *directed acyclic network* consists of a set of nodes and directed edges, where there are no cycles.



- ► In a Bayesian network (BN), the nodes are labeled by random variables
- ▶ We can think of the edges as representing causal influence

More definitions:

- ▶ The *ancestors* of *X* in the graph are those random variables that have a potential influence on *X*.
 - ▶ Y is an ancestor of X in graph G if there is a directed path from Y to X in G—i.e., a sequence (Y_1, \ldots, Y_k) of nodes—such that $Y_1 = Y$, $Y_k = X$, and there is a directed edge from Y_i to Y_{i+1} for $i = 1, \ldots, k-1$.
- ▶ The *parents* of X in G ($Par_G(X)$) are those ancestors of X directly connected to X.
 - ightharpoonup SH and S are the parents of C, PS is the parent of S
- ▶ The *nondescendants* of X (NonDes $_G(X)$) are those nodes Y such that X is not the ancestor of Y.

More definitions:

- ▶ The *ancestors* of *X* in the graph are those random variables that have a potential influence on *X*.
 - Y is an ancestor of X in graph G if there is a directed path from Y to X in G—i.e., a sequence (Y_1,\ldots,Y_k) of nodes—such that $Y_1=Y,\,Y_k=X,$ and there is a directed edge from Y_i to Y_{i+1} for $i=1,\ldots,k-1$.
- ▶ The *parents* of X in G ($Par_G(X)$) are those ancestors of X directly connected to X.
 - ightharpoonup SH and S are the parents of C, PS is the parent of S
- ▶ The *nondescendants* of X (NonDes $_G(X)$) are those nodes Y such that X is not the ancestor of Y.

Key definition: The Bayesian network G (qualitatively) represents the probability measure μ if, for all nodes X in G,

$$I^{rv}_{\mu}(X, \operatorname{NonDes}_G(X) \mid \operatorname{Par}(X)).$$

▶ *X* is independent of its nondescendants given its parents

Why did we choose this weird definition of represntation?

► It's useful!

Why did we choose this weird definition of represntation?

► It's useful!

Suppose that a world is characterized by the value of the rvs X_1, \ldots, X_n , and we want to compute the probability of the world (x_1, \ldots, x_n) without needing to store too many numbers.

▶ Knowing these conditional independencies let's us do this

An apparent digression: the chain rule

Given arbitrary sets U_1, \ldots, U_n , it is immediate from the definition of conditional probability that

$$\mu(U_1 \cap \ldots \cap U_n) = \mu(U_n \mid U_1 \cap \ldots \cap U_{n-1}) \times \mu(U_1 \cap \ldots \cap U_{n-1}).$$

An apparent digression: the chain rule

Given arbitrary sets U_1, \ldots, U_n , it is immediate from the definition of conditional probability that

$$\mu(U_1 \cap \ldots \cap U_n) = \mu(U_n \mid U_1 \cap \ldots \cap U_{n-1}) \times \mu(U_1 \cap \ldots \cap U_{n-1}).$$

Applying this observation inductively gives the chain rule:

$$\mu(U_1 \cap \ldots \cap U_n) = \mu(U_n \mid U_1 \cap \ldots \cap U_{n-1}) \times \mu(U_{n-1} \mid U_1 \cap \ldots \cap U_{n-2}) \times \ldots \times \mu(U_2 \mid U_1) \times \mu(U_1).$$

An apparent digression: the chain rule

Given arbitrary sets U_1, \ldots, U_n , it is immediate from the definition of conditional probability that

$$\mu(U_1 \cap \ldots \cap U_n) = \mu(U_n \mid U_1 \cap \ldots \cap U_{n-1}) \times \mu(U_1 \cap \ldots \cap U_{n-1}).$$

Applying this observation inductively gives the chain rule:

$$\mu(U_1 \cap \ldots \cap U_n)$$

$$= \mu(U_n \mid U_1 \cap \ldots \cap U_{n-1}) \times$$

$$\mu(U_{n-1} \mid U_1 \cap \ldots \cap U_{n-2}) \times \ldots \times \mu(U_2 \mid U_1) \times \mu(U_1).$$

Now take U_i be the event $X_i = x_i$.

▶ the set of all worlds where $X_i = x_i$ Plugging this into the chain rule gives:

$$\mu(x_1, \dots, x_n) = \mu(X_1 = x_1 \cap \dots \cap X_n = x_n) = \mu(X_n = x_n \mid X_1 = x_1 \cap \dots \cap X_{n-1} = x_{n-1}) \times$$

 $\mu(X_{n-1} = x_{n-1} \mid X_1 = x_1 \cap \dots \cap X_{n-2} = x_{n-2}) \times \dots \times \mu(X_2 = x_2 \mid X_1 = x_1) \times \mu(X_1 = x_1).$

6/17

The Punch Line

To repeat, using the chain rule, we have:

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid X_1 = x_1 \cap \ldots \cap X_{n-1} = x_{n-1}) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid X_1 = x_1 \cap \ldots \cap X_{n-2} = x_{n-2}) \times$$

$$\ldots \times \mu(X_2 = x_2 \mid X_1 = x_1) \times \mu(X_1 = x_1).$$

The Punch Line

To repeat, using the chain rule, we have:

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid X_1 = x_1 \cap \ldots \cap X_{n-1} = x_{n-1}) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid X_1 = x_1 \cap \ldots \cap X_{n-2} = x_{n-2}) \times$$

$$\ldots \times \mu(X_2 = x_2 \mid X_1 = x_1) \times \mu(X_1 = x_1).$$

Now suppose without loss of generality that $\langle X_1, \dots, X_n \rangle$ is a topological sort of (the nodes in) G.

▶ if X_i is a parent of X_j , then i < j.

Thus, $\{X_1,\ldots,X_{k-1}\}\subseteq \operatorname{NonDes}_G(X_k)$, for $k=1,\ldots,n$

- ▶ All the descendants of X_k must have subscripts > k.
- ▶ Conclusion: all the nodes in $\{X_1, \ldots, X_{k-1}\}$ are independent of X_k given $\operatorname{Par}_G(X_k)$.

The Punch Line

To repeat, using the chain rule, we have:

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid X_1 = x_1 \cap \ldots \cap X_{n-1} = x_{n-1}) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid X_1 = x_1 \cap \ldots \cap X_{n-2} = x_{n-2}) \times$$

$$\ldots \times \mu(X_2 = x_2 \mid X_1 = x_1) \times \mu(X_1 = x_1).$$

Now suppose without loss of generality that $\langle X_1, \dots, X_n \rangle$ is a topological sort of (the nodes in) G.

▶ if X_i is a parent of X_j , then i < j.

Thus, $\{X_1, \ldots, X_{k-1}\} \subseteq \operatorname{NonDes}_G(X_k)$, for $k = 1, \ldots, n$

- ▶ All the descendants of X_k must have subscripts > k.
- ▶ Conclusion: all the nodes in $\{X_1, \ldots, X_{k-1}\}$ are independent of X_k given $\operatorname{Par}_G(X_k)$.

It follows that

$$\mu(X_k = x_k \mid X_{k-1} = x_{k-1} \cap \dots \cap X_1 = x_1)$$

= $\mu(X_k = x_k \mid \bigcap_{X_i \in Par(X_k)} X_i = x_i).$

So we can greatly simplify our original equation:

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid X_1 = x_1 \cap \ldots \cap X_{n-1} = x_{n-1}) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid X_1 = x_1 \cap \ldots \cap X_{n-2} = x_{n-2}) \times$$

$$\ldots \times \mu(X_2 = x_2 \mid X_1 = x_1) \times \mu(X_1 = x_1).$$

But if G represents μ , then

$$\mu(X_k = x_k \mid X_{k-1} = x_{k-1} \cap \dots \cap X_1 = x_1)$$

= $\mu(X_k = x_k \mid \bigcap_{X_i \in Par(X_k)} X_i = x_i).$

So the equation above reduces to

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid \bigcap_{X_i \in Par(X_n)} X_i = x_i) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid \bigcap_{X_i \in Par(X_{n-1})} X_i = x_i) \times$$

$$\cdots \times \mu(X_1 = x_1).$$

So we can greatly simplify our original equation:

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid X_1 = x_1 \cap \ldots \cap X_{n-1} = x_{n-1}) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid X_1 = x_1 \cap \ldots \cap X_{n-2} = x_{n-2}) \times$$

$$\ldots \times \mu(X_2 = x_2 \mid X_1 = x_1) \times \mu(X_1 = x_1).$$

But if G represents μ , then

$$\mu(X_k = x_k \mid X_{k-1} = x_{k-1} \cap \dots \cap X_1 = x_1)$$

= $\mu(X_k = x_k \mid \bigcap_{X_i \in Par(X_k)} X_i = x_i).$

So the equation above reduces to

$$\mu(X_1 = x_1 \cap \ldots \cap X_n = x_n)$$

$$= \mu(X_n = x_n \mid \bigcap_{X_i \in Par(X_n)} X_i = x_i) \times$$

$$\mu(X_{n-1} = x_{n-1} \mid \bigcap_{X_i \in Par(X_{n-1})} X_i = x_i) \times$$

$$\cdots \times \mu(X_1 = x_1).$$

Key point: If each variable X_i has relatively few parents, then to compute $\mu(x_1, \ldots, x_n)$, we need relatively few numbers.

Quantitative Bayesian Networks

A quantitative Bayesian network is a pair (G,f) consisting of a qualitative Bayesian network G and a function f that associates with each node X in G a conditional probability table (cpt). If $\operatorname{Par}_G(X) = \mathbf{Y}$, then the cpt gives, for each possible setting x of X and \mathbf{y} of \mathbf{Y} , a number $f(X, x, \mathbf{Y}, \mathbf{y})$.

(G,f) represents μ if

- 1. G qualitatively represents μ
- 2. $\mu(X = x \mid \mathbf{Y} = \mathbf{y}) = f(X, x, \mathbf{Y}, \mathbf{y}).$

Quantitative Bayesian Networks

A quantitative Bayesian network is a pair (G,f) consisting of a qualitative Bayesian network G and a function f that associates with each node X in G a conditional probability table (cpt). If $\operatorname{Par}_G(X) = \mathbf{Y}$, then the cpt gives, for each possible setting x of X and \mathbf{y} of \mathbf{Y} , a number $f(X, x, \mathbf{Y}, \mathbf{y})$.

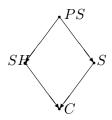
(G,f) represents μ if

- 1. G qualitatively represents μ
- 2. $\mu(X = x \mid \mathbf{Y} = \mathbf{y}) = f(X, x, \mathbf{Y}, \mathbf{y}).$

If (G, f) quantitatively represents μ then we can completely reconstruct μ from (G, f).

- ▶ Suppose that the world is described by *N* binary variables.
- lacktriangle This means that we are putting a probability distribution on 2^N worlds.
- ightharpoonup But if each rv has at most n parents, then each cpt requires at most 2^{n+1} numbers
- ▶ At most $N2^{n+1} \ll 2^N$ numbers needed altogether

Example: We get a quantitative BN for smoking by considering the qualitative BN:



together with the following cpts:

S	SH	C
1	1	.6
1	0	.4
0	1	.1
0	0	.01

PS	S
1	.4
0	.2

PS	SH
1	.8
0	.3

PS	
.3	

Constructing a Quantative BN

Proposition: A quantititive BN (G,f) represents a unique probability distribution $\mu.$

Constructing a Quantative BN

Proposition: A quantititive BN (G,f) represents a unique probability distribution $\mu.$

What about the converse? Given a probabilty distribution μ , can we find a quantitative BN that represents it?

▶ Yes! There are lots.

Construction:

- ▶ Given μ , let Y_1, \ldots, Y_n be any permutation of the random variables in \mathcal{X} .
- For each k, find a minimal subset of $\{Y_1, \ldots, Y_{k-1}\}$, call it \mathbf{P}_k , such that $I_{\mu}^{rv}(\{Y_1, \ldots, Y_{k-1}\}, Y_k \mid \mathbf{P}_k)$.
 - ▶ There is a subset with this property, namely, $\{Y_1, \ldots, Y_{k-1}\}$.
 - ▶ So there must be a minimal one
- ▶ Add edges from each of the nodes in P_k to Y_k .
- ▶ Call the resulting graph *G*.

Theorem G qualitatively represents μ .

Constructing a Quantative BN

Proposition: A quantititive BN (G,f) represents a unique probability distribution $\mu.$

What about the converse? Given a probabilty distribution μ , can we find a quantitative BN that represents it?

▶ Yes! There are lots.

Construction:

- ▶ Given μ , let Y_1, \ldots, Y_n be any permutation of the random variables in \mathcal{X} .
- For each k, find a minimal subset of $\{Y_1, \ldots, Y_{k-1}\}$, call it \mathbf{P}_k , such that $I_{\mu}^{rv}(\{Y_1, \ldots, Y_{k-1}\}, Y_k \mid \mathbf{P}_k)$.
 - ▶ There is a subset with this property, namely, $\{Y_1, \ldots, Y_{k-1}\}$.
 - ▶ So there must be a minimal one
- ▶ Add edges from each of the nodes in P_k to Y_k .
- ▶ Call the resulting graph G.

Theorem G qualitatively represents μ .

Now just add the "right" cpts

The Bayesian network construted depends on the ordering of the edges.

- ▶ Different orderings may lead to different Bayesian networks.
 - ▶ The BN for smoking was constructed with the ordering PS, S, SH, C.
 - We could construct another one using the ordering C, S, PS, SH
 - ▶ It would have C at the root
- Experience has shown that we get "better" BNs if we order the variables causally
 - If X has a causal influence on Y, then X precedes Y in the order
 - ► This was the case with the original smoking network
 - "Better" typically means
 - ► fewer edges
 - easier to elicit the cpt from experts

The Bayesian network construted depends on the ordering of the edges.

- ▶ Different orderings may lead to different Bayesian networks.
 - ► The BN for smoking was constructed with the ordering PS, S, SH, C.
 - We could construct another one using the ordering C, S, PS, SH
 - ▶ It would have C at the root
- Experience has shown that we get "better" BNs if we order the variables causally
 - If X has a causal influence on Y, then X precedes Y in the order
 - ► This was the case with the original smoking network
 - "Better" typically means
 - fewer edges
 - easier to elicit the cpt from experts

This construction of BNs used only CIRV1-5

 Conclusion: it works without change for arbitrary algebraic plausibility measures

Independencies in BNs

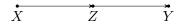
If G represents μ , then an rv in G is independent of its nondescendants conditional on its parents with respect to μ .

- ▶ What other independencies hold?
- There is a critrion that lets us compute this.

d-separation

X is d-separated (d = directed) from a node Y by a set \mathbf{Z} of nodes in G, written d-sep $_G(X,Y \mid \mathbf{Z})$, if for every undirected path from X to Y there is a node Z' on the path such that either

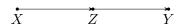
(a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';



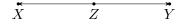
d-separation

X is d-separated (d = directed) from a node Y by a set \mathbf{Z} of nodes in G, written d-sep $_G(X,Y \mid \mathbf{Z})$, if for every undirected path from X to Y there is a node Z' on the path such that either

(a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';



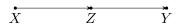
(b) $Z' \in \mathbf{Z}$ and has both path arrows leading out; or



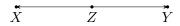
d-separation

X is d-separated (d = directed) from a node Y by a set ${\bf Z}$ of nodes in G, written d-sep $_G(X,Y \mid {\bf Z})$, if for every undirected path from X to Y there is a node Z' on the path such that either

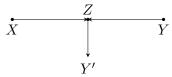
(a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';



(b) $Z' \in \mathbf{Z}$ and has both path arrows leading out; or



(c) Z' has both path arrows leading in, and neither Z' nor any of its descendants are in \mathbf{Z} .



X is d-separated (d = directed) from a node Y by a set ${\bf Z}$ of nodes in G, written d-sep $_G(X,Y \mid {\bf Z})$, if for every undirected path from X to Y there is a node Z' on the path such that either

- (a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';
- (b) $Z' \in \mathbf{Z}$ and has both path arrows leading out; or
- (c) Z' has both path arrows leading in, and neither Z' nor any of its descendants are in \mathbf{Z} .

Example:

- ▶ $\{SH, S\}$ d-separates PS from C.
- $\{PS\}$ d-separates SH from S.
- $ightharpoonup \{PS,C\}$ does *not* d-separate SH from S.

d-separation: some intuition

X is d-separated (d = d-rected) from a node Y by a set \mathbf{Z} of nodes in G, written d-sep $_G(X,Y \mid \mathbf{Z})$, if for every u-ndirected path from X to Y there is a node Z' on the path such that either

- (a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';
 - ▶ pretty intuitive: conditioning on $\{SH,S\}$ blocks all paths from PS to C, so C is conditionally independent of PS given $\{SH,S\}$.

d-separation: some intuition

X is d-separated (d = d-rected) from a node Y by a set \mathbf{Z} of nodes in G, written d-sep $_G(X,Y \mid \mathbf{Z})$, if for every u-ndirected path from X to Y there is a node Z' on the path such that either

- (a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';
 - ▶ pretty intuitive: conditioning on $\{SH,S\}$ blocks all paths from PS to C, so C is conditionally independent of PS given $\{SH,S\}$.
- (b) $Z' \in \mathbf{Z}$ and has both path arrows leading out; or
 - ightharpoonup SH and S are not independent, because they have a common cause (PS), but conditioning on PS makes them independent
- (c) Z' has both path arrows leading in, and neither Z' nor any of its descendants are in \mathbf{Z} .

d-separation: some intuition

X is d-separated (d = d-rected) from a node Y by a set \mathbf{Z} of nodes in G, written d-sep $_G(X,Y \mid \mathbf{Z})$, if for every u-ndirected path from X to Y there is a node Z' on the path such that either

- (a) $Z' \in \mathbf{Z}$ and there is an arrow on the path leading in to Z' and an arrow leading out from Z';
 - ▶ pretty intuitive: conditioning on $\{SH,S\}$ blocks all paths from PS to C, so C is conditionally independent of PS given $\{SH,S\}$.
- (b) $Z' \in \mathbf{Z}$ and has both path arrows leading out; or
 - ightharpoonup SH and S are not independent, because they have a common cause (PS), but conditioning on PS makes them independent
- (c) Z' has both path arrows leading in, and neither Z' nor any of its descendants are in \mathbf{Z} .
 - \blacktriangleright S and SH are indepedent conditional on PS, but they, would become *dependent* if we also conditioned on C

D-separation completely characterizes conditional independence in Bayesian networks:

Theorem: If ${\bf X}$ is d-separated from ${\bf Y}$ by ${\bf Z}$ in the Bayesian network G, then $I_{\mu}^{rv}({\bf X},{\bf Y}\mid {\bf Z})$ holds for all probability measures μ compatible with G. Conversely, if ${\bf X}$ is not d-separated from ${\bf Y}$ by ${\bf Z}$, then there is a probability measure μ compatible with G such that $I_{\mu}^{rv}({\bf X},{\bf Y}\mid {\bf Z})$ does not hold.

D-separation completely characterizes conditional independence in Bayesian networks:

Theorem: If ${\bf X}$ is d-separated from ${\bf Y}$ by ${\bf Z}$ in the Bayesian network G, then $I_{\mu}^{rv}({\bf X},{\bf Y}\mid {\bf Z})$ holds for all probability measures μ compatible with G. Conversely, if ${\bf X}$ is not d-separated from ${\bf Y}$ by ${\bf Z}$, then there is a probability measure μ compatible with G such that $I_{\mu}^{rv}({\bf X},{\bf Y}\mid {\bf Z})$ does not hold.

- ► The proof of the first half of the theorem requires only CIRV1-5, so holds for all algebraic plausibility measures
- ▶ for the second half, we need some extra conditions.

Bottom line: the technology of Bayesian networks can be applied quite widely!