Using Counterfactuals in Knowledge-Based Programming

Joe Halpern Cornell University

> Yoram Moses Technion

Knowledge-Based Programs

Knowledge-based (kb) programs [Halpern-Fagin, 1985] provide a high-level way of designing and specifying protocols, by allowing tests on a user's knowledge:

if
$$K(x = 0)$$
 then $y := y + 1$ else skip,

• If you know that x = 0 then set y to y + 1; else do nothing

Knowledge-based programs are useful [lots of examples in paper], but can sometimes behave in a counterintuitive way . . .

The Bit-Transmission Problem

Suppose a sender S wants to communicate a bit to a receiver R over a possibly faulty communication line.

• S sends bit to R repeatedly until it receives an ack:

if recack then skip else sendbit

We can capture these intuitions using a kb program:

if $K_S recbit$ then skip else sendbit

• If the sender knows that the receiver has received the bit, then it halts; otherwise it resends the bit.

Can further abstract away how knowledge is obtained:

if $K_SK_R(bit)$ then skip else sendbit

- If the sender knows that the receiver knows the bit, then it halts; otherwise it resends the bit.
 - $-K_R(bit) = K_R(bit = 0) \lor K_R(bit = 1).$
 - the sender may know that the receiver knows the bit even without an acknowledgement

Further Optimizations

Suppose that messages are guaranteed to arrive within 5 rounds. Then

if
$$K_SK_R(bit)$$
 then skip else sendbit

is "wasteful".

• The bit is sent 5 times; it suffices to send it once.

The obvious improvement:

if
$$K_S \diamondsuit recbit$$
 then skip else sendbit

But there's a problem:

- Should S send the bit?
 - In systems where S sends the bit, $K_S \diamondsuit recbit$ always holds, so S shouldn't send the bit.
 - In systems where S doesn't send the bit, $K_S \diamondsuit recbit$ never holds, so S should send the bit.

Conclusion: S should send the bit iff S doesn't send it.

• This kb program is not implementable!

The same difficulties arise with

if
$$K_SK_R(bit)$$
 then skip else sendbit

A Slightly Different Intuition

Instead of saying

• S should stop sending if S knows that R will eventually receive the bit,

we should say

• S should stop sending if it knows that even if S does not send another message R will eventually receive the bit.

Suppose $do(i, \mathbf{a})$ is true if process i performs \mathbf{a} in the next round. Could try

if $K_S(do(S, skip) \Rightarrow \Diamond recbit)$ then skip else sendbit

- This has the same problems as the earlier program
- \bullet S should send the bit iff S doesn't send the bit

Counterfactuals to the Rescue

- \Rightarrow is a material implication
 - $p \Rightarrow q$ is vacuously true if p is false

We need to use a counterfactual implication p > q:

- Suppose the match is wet. Is the statement "If the match were dry then it would light" true?
- How about "If the brakes weren't faulty, then I wouldn't have had the accident"
 - (even though I was drunk and it was pouring rain)

[Stalnaker, Lewis]: p > q is true at a world w if q is true at the closest worlds to w where p is true.

- But what are the closest worlds?
 - A major problem for philosophers
 - Somewhat easier in the context of protocols

Another Complication

When does protocol P implement kb program Pg_{kb} ?

- Idea: consider set $\mathcal{R}(P)$ of runs generated by P
- Evaluate knowledge tests in Pg_{kb} with respect to $\mathcal{R}(P)$
- See if Pg_{kb} then generates $\mathcal{R}(P)$

Problem: to evaluate counterfactuals, we need to consider runs not in $\mathcal{R}(P)$.

- These are runs counter to fact, where P is not followed
 - What would happen if the message weren't set (even though, according to P, it is)

Using a larger set of runs means we can no longer express global properties of P.

• Properties that hold in all runs of $\mathcal{R}(P)$.

Belief

Solution: consider *belief* instead of knowledge.

- Evaluate tests with respect to larger system that includes the counterfactual runs.
- Each run is ranked
 - Lower rank = more likely
 - Runs of P get rank 0; all other runs get higher rank
- A formula is *believed* if it holds in all the runs of lowest rank considered possible.
- This notion of belief coincides with knowledge when restricted to the runs of *P*

Using the counterfactual operator and this interpretation for belief, we get the program BT[>]:

if $B_S(do(S, \mathsf{skip}) > \Diamond recbit)$ then skip else sendbit.

This program does what we want.

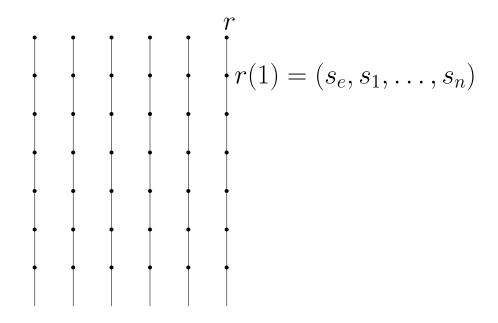
• The rest of the talk makes all this precise . . .

Multi-Agent Systems

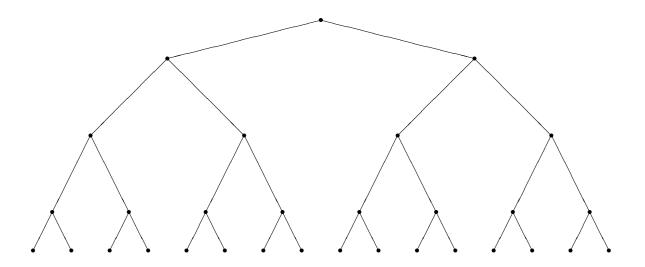
A system consists of a collection of processes/agents connected by a communication network

- Each agent has a *local* state
 - depends on initial state, messages received, etc.
 - captures all the information the agent can access.
- The *environment* state captures everything else that's relevant
- The *global state* is a tuple consisting of each process' (local) state + environment state
- A run of the system is a complete description of the system over time:
 - a function from times to global states
- A *system* is a set of runs
 - we identify a system with its possible behaviors

A system:



The runs in a system are often best thought of as the branches of a computation tree:



Knowledge in multi-agent systems

A system is a Kripke structure!

- The possible worlds are pairs (r, m)
 - Worlds now have structure (global states)
- $(r, m) \sim_i (r', m')$ if agent i has the same local state in r(m) and r'(m')
 - $-\sim_i$ defines an equivalence relation \mathcal{K}_i
- Also need an interpretation π

Let
$$\mathcal{I} = (\mathcal{R}, \pi)$$

• $(\mathcal{I}, r, m) \models K_i \varphi$ if $(\mathcal{I}, r', m') \models \varphi$ for all (r', m') such that $r'_i(m') = r_i(m)$.

This is an idealized notion of knowledge, that does not take computation into account.

• It is still a useful tool for analyzing systems.

Protocols

Where do the runs in a system come from?

Typically they are generated by a *protocol*.

- a description of each agent's actions as a function of his local state
 - if receive messagethen send acknowledgement

Given a protocol P, can consider the system $\mathcal{R}(P, \gamma)$ consisting of all runs of P in $context \gamma$.

- Context specifies
 - whether messages are guaranteed to arrive
 - upper bounds on message delivery time
 - what type of faulty behavior is possible

— . . .

Knowledge-Based Programs

A kb program Pg_{kb} and an interpreted system $\mathcal{I} = (\mathcal{R}, \pi)$ determine a protocol $\mathsf{Pg}_{kb}^{\mathcal{I}}$ in context γ :

- What does the protocol $\mathsf{Pg}_{kb}^{\mathcal{I}}$ do at point (r, m)?
 - If Pg_{kb} says "**if** $K\varphi$ **then a else b**", then evaluate whether $K_i\varphi$ is true at (\mathcal{I}, r, m) .

Does $\mathsf{Pg}_{kb}^{\mathcal{I}}$ generate \mathcal{R} ?

• If so, protocol $\mathsf{Pg}_{kb}^{\mathcal{I}}$ implements Pg_{kb} .

A kb program may have 0, 1, or many protocols that implement it.

- Can think of a kb program as a specification
- Exist sufficient conditions for when a kb-program is implemented by a unique protocol.
- if $K_S \diamondsuit recbit$ then skip else sendbit is not implemented by any protocol

Interpreting Counterfactuals

A counterfactual system has the form $\mathcal{J} = (\mathcal{I}, \ll)$

- $\bullet \mathcal{I}$ is an interpreted system
- \ll is an order assignment
 - $-(r_1, m_1) \ll_{(r,m)} (r_2, m_2)$ means " (r_1, m_1) is closer to (r, m) than (r_2, m_2) "

$$(\mathcal{J}, r, m) \models \varphi > \psi$$
 if $(\mathcal{J}, r', m') \models \psi$ for all $(r', m') \in \mathsf{closest}(\llbracket \varphi \rrbracket, (r, m), \ll)$

- $\operatorname{closest}(\llbracket \varphi \rrbracket, (r, m), \ll)$ consists of the points closest to (r, m) w.r.t. \ll satisfying φ .
- $\varphi > \psi$ is true at (r, m) if ψ is true at all the closest points to (r, m) where φ is true
 - This is just the Stalnaker/Lewis definition.

We are mainly interested in $do(i, a) > \psi$:

• Would ψ be true if i performed a?

Conditions on \ll

How should we define \ll ?

- Intuitively, it depends on the protocol of interest
- We want minimize deviations from the protocol

 \mathcal{R}^+ consists of all runs generated by all possible protocols.

- An order generator o maps protocols P to order $o(P) = \ll^P$ on the points in \mathcal{R}^+
- o respects protocols if, for all P, the closest points (w.r.t. $o(P) = \ll^P$) to (r, m) where i performs action a are points (r', m) such that
 - -r(m) = r'(m)
 - * up to time m, same thing happens in r and r'
 - -i performs action a at (r', m)
 - otherwise, all agents follow protocol P
- Intuitively, $(r_1, m_1) \ll_{(r,m)}^P (r_2, m_2)$ if (r_1, m_1) if involves fewer deviations from P than (r_2, m_2) .

Belief Formalized

Give semantics to belief using ideas of Spohn.

- A ranking function κ associates with every run either a natural number or ∞ .
 - Bigger numbers mean the run is less likely
- $\bullet \, \min_i^{\kappa}(r,m) \,\, = \,\, \min\{\kappa(r') \, | \, r' \in \mathcal{R}^+, r_i'(m') = r_i(m)\}$
 - $-\min_{i}^{\kappa}(r,m)$ is the smallest rank that i considers possible at (r,m)
- $(\mathcal{I}, \ll, \kappa, r, m) \models B_i \varphi$ iff $(\mathcal{I}, \ll, \kappa, r', m') \models \varphi$ for all (r', m') such that $\kappa(r') = \min_i^{\kappa}(r, m)$ and $r'_i(m') = r_i(m)$.
 - -i believes φ is φ is true at all points that i considers possible that have minimal rank
 - This definition of belief satisfies KD45.

Conditions on κ

How should we define κ ?

- Intuitively, it depends on the protocol of interest
- We want minimize deviations from the protocol

 κ is P-compatible (in context $\gamma)$ if runs of P are the "most likely" runs according to κ

• $\kappa(r) = 0$ iff $r \in \mathcal{R}(P, \gamma)$

Examples

- 1. $\kappa(r) = 0$ if $r \in \mathcal{R}(P, \gamma)$, else $\kappa(r) = 1$
- 2. $\kappa(r)$ counts number of deviations from a run of P

Lemma: If κ is P-compatible in γ and $(r, m) \in \mathcal{R}(P, \gamma)$, then $(\mathcal{R}(P, \gamma), r, m) \models K_i \varphi$ iff $(\mathcal{R}^+, \kappa, r, m) \models B_i \varphi$.

- With P-compatible rankings, belief in \mathcal{R}^+ acts like knowledge in $\mathcal{R}(P,\gamma)$.
- Can recover $\mathcal{R}(P, \gamma)$ from \mathcal{R}^+ .

A ranking generator σ maps protocols P to rankings κ^P on the runs in \mathcal{R}^+ .

• σ is deviation compatible (in context γ) if $\sigma(P)$ is P-compatible.

A Recap

We have a lot of machinery:

- Order generators that map protocols to orders on points in \mathcal{R}^+ .
 - Needed to give semantics to counterfactuals.
- Ranking generators that map protocols to rankings on runs in \mathcal{R}^+ .
 - Needed to give semantics to belief.
- Order generators that respect protocols and deviation compatible ranking generators give orders/rankings that are compatible with the underlying protocol.

Why bother?

- This is what we need to make sense out of *counter-factual belief-based (cbb) programs*:
 - programs with tests involving counterfactuals and belief

Counterfactual Belief-Based Programs

- An extended context (γ, o, σ) consists of a context γ , an order generator o and a ranking generator σ .
- Given a counterfactual belief-based program and $\mathcal{J} = (\mathcal{R}, \ll, \kappa, \pi)$, get a protocol $P = \mathsf{Pg}_{kb}^{\mathcal{J}}$ in context γ :
 - Use \mathcal{J} to determine outcome of knowledge tests
 - Use \ll to determine truth of counterfactuals
 - Use κ to determine beliefs
- If $\mathcal{J} = (\mathcal{R}(P, \gamma), o(P), \sigma(P))$, then P implements Pg_{kb} in extended context (γ, o, σ) .

Key point: Cbb programs extend kb programs in extended contexts where σ is deviation compatible:

• If σ is deviation compatible, P implements a kb program Pg_{kb} in context γ iff P implements cbb program Pg_{kb}^B in extended context (γ, o, σ) .

The Bit Transmission Problem Again

Consider three different contexts:

- γ_1 : messages guaranteed to be within 5 rounds;
- γ_2 : messages guaranteed to arrive eventually, but no upper bound on message delivery time;
- γ_3 : messages guaranteed to arrive eventually, but only if sent infinitely often.

 EC_i consists of all extended contexts of the form (γ_i, o, σ) , where

- o respects protocols
- σ is deviation compatible

Consider two cbb protocols:

BT $^>$: if $B_S(do(S, skip) > \diamondsuit recbit)$ then skip else sendbit BT $^{\diamondsuit B}$: if $B_S(do(S, skip) > \diamondsuit B_R(bit))$ then skip else sendbit

Theorem: Both BT[>] and BT^{$\Diamond B$} solve the bit-transmission problem in all the extended contexts $EC_1 \cup EC_2 \cup EC_3$, and are implementable in each of these contexts.

EC_1

Recall: in EC_1 , messages arrive within 5 rounds.

 $P^1(k, m)$: **if** (time = k, bit = 0) or (time = m, bit = 1) **then** sendbit **else** skip.

Lemma:

- (a) $P^1(k,m)$ implements $BT^{>}$ in all contexts in EC_1
- (b) $P^1(k, m)$ implements $\mathsf{BT}^{\Diamond B}$ in $\xi \in EC_1$ only if (i) k = m and (ii) κ satisfies a technical property [see paper].
 - Problem: $P^1(k, m)$ is sending an unnecessary message if messages are guaranteed to arrive.

 $P^2(k, b)$: if time = k and bit = b then sendbit else skip.

• E.g., with $P^2(3,0)$, the sender sends 0 at round 3 if bit = 0, and nothing if bit = 1.

Lemma: Every instance of $P^2(k, b)$ implements $\mathsf{BT}^{\Diamond B}$ in every context in EC_1 ; no instance of $P^2(k, b)$ implements BT^{\flat} in contexts in EC_1 .

EC_2

Recall: in EC_2 messages arrive eventually.

• Now messages must be sent for both bit values

Lemma: Every instance of $P^1(k, m)$ implements $\mathsf{BT}^{\diamondsuit B}$ and BT^{\gt} in every context in EC_2 ; no instance of $P^2(k, b)$ implements BT^{\gt} or $\mathsf{BT}^{\diamondsuit B}$ in contexts in EC_2 .

EC_3

Recall: in EC_3 , messages must be sent infinitely often to guarantee delivery.

- $P^1(k, m)$ or $P^2(k, b)$ do not $BT^{\diamondsuit B}$ or BT^{\gt} implement in any context in EC_3 .
 - One message clearly isn't enough!

For $I \subseteq I\!\!N$, define protocol P(I):

if $time \in I$ then sendbit else skip

Lemma: For all choices of I, P(I) does not implement $\mathsf{BT}^{>}$ or $\mathsf{BT}^{\diamondsuit B}$ in any context in EC_3 .

• This is the *procrastinator's paradox*: can always postpone sending the message one more round.

 P^{ω} : if time = 0 or sendbit performed in previous round then sendbit else skip.

Lemma: P^{ω} implements both $BT^{>}$ and $BT^{\diamondsuit B}$ in every context in EC_3 .

- But $P(I\!\!N)$ and P^{ω} generate the same system!
- What matters is what they do "off the beaten path".

Conclusions

We have presented a framework that allows counterfactual reasoning in protocols.

- Permits the design of efficient high-level protocols.
 - Current work: applying these ideas to *global fun*cion computation:
 - * computing function of values on a network
 - * E.g.: leader election
- Approach may shed light on philosophical issues involved with counterfactuals
 - What worlds are "closest" depends on the protocol
- Approach may also shed light on equilibrium notions in game theory
 - You are in equilibrium if you would not be better off had you done otherwise.
 - * But it also matters what you would have done "off the beaten path".