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Non-realizable expert + limited support?

Hard ()

Behavior Cloning

compounds in error O(eT?)
[Ross & Bagnell 10}




Setting

Solution

Non-realizable expert +
limited expert support

Even as N — o0,
behavior cloning O(eT?)




Why can't we just collect
data (s,a™) on the
distribution of states the
learner visits?




Introducing an interactive expert!




To know the distribution, you need a learner
To train a learner, you need a distribution
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Brainstorm

How can we solve the chicken and egg problem, i.e. train the learner
on a distribution of states it visits?
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An embarrassingly simple algorithm: FORWARD

ldea: Train a different learner policy at every timestep by interactively querying expert

Get start state samples s, ~ d’(.)
fort =0 ... T-1

Query interactive expert to get
ar = m*(s,)

Train a learner policy at time ¢
n' = Train(s,, a*)

Execute learner policy z’ to get

next state samples s,, ; ~ dt1(.)
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But what if we want
ONE policy?
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DAGGER: A meta-algorithm for imitation learning

A Reduction of Imitation Learning and Structured Prediction
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[Ross et al’11]

DAgger: lteration O

Human drives
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[Ross et al’11]

DAgger: lteration 1
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[Ross et al’11]

DAgger: lteration 2
Robot #, drives Ofo
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[Ross et al’11]

DAgger: Iteration 1
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Robot z, drives 0,0

After many iterations ....
we are able to drive like a human!
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But why does
aggregating data work?’
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Imitation learning is
just a game

Be stable

Slowly change
predictions
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Let's provel
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How can | customize
DAGGER to be more
practical?’
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Customizing your DAGGER

Q1. The policy iteration at step 1 is crappy and visits irrelevant
states. What do | do?

Blend the expert and learner policy ;= (1 — p)x; + p;7*

Q2. What if | can't afford to store all the aggregated data?

Online gradient descent!
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https://www.youtube.com/watch?v=V00npNnWzSU

DAGGER is 3 foundatlon

Im/tatlon under uncerta/nty

Reinforcement

Learning

ExPLORE STROLL

Counterfactual Teachin

 Agnostic

Mode/ /earnlng Imitation learning Query efficient

DAGGER

HG-DAGGER]
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Lee et al, Learning quadrupedal locomotion over
challenging terrain (2020)

Choudhury et al, Data Driven Planning via
Imitation Learning (2018)

imitation

0
0 Privileged
- ° agent
0

> 0

Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous
driving (2019)
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DAGGER is not just for imitation learning!

Agnostic System Identification
for Model-Based Reinforcement Learning

Stéphane Ross STEPHANEROSS@CMU.EDU
Robotics Institute, Carnegie Mellon University, PA USA

J. Andrew Bagnell DBAGNELL@RI.CMU.EDU
Robotics Institute, Carnegic Mellon University, PA USA

Desired Trajectory

Training /

distribution

4 Test Trajectory
to collect data ~ ’

Model-based Reinforcement Learning
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DAGGER is not just for imitation learning!

(a) Forward simulation of learned model (gray) introduces error at each prediction
step compared to the true time-series (red)

(b) Data provides a demonstration of corrections required to return back to proper
prediction

DATA AS DEMONSTRATOR with Applications to
System Identification
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Hidden charge #1: Not all mistakes are equal

S1 Bad states Sy.4
(81 ® m(53) which expert would never visit

Learner

1mitates expert

perfectly 1n Sbad

Expert always stays

on the race track === @~ T = =m0 o = -

Dagger minimizes 0-1 loss, but what we really want to optimize are
advantages! (More next lecture)
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Hidden charge #2: Dagger asks the expert for queries everywhere

We'll see how to learn from
imited human feedback (interventions)
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Hidden charge #3: Dagger expects at least one policy to be good
everywhere
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tl:dr

| earner

Initialize policy

Update policy

To know the distribution, you need a learner

To train a learner, you need a distribution

The Imitation Game 5
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DAgger: lteration 1
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