Iterative Linear Quadratic Regulator

Sanjiban Choudhury

Cornell Bowers CIS Computer Science

LQR is cute...
 But what if my robot is not linear?

LQR is

fundamentally a way to
locally approximate and
update value functions

Activity!

Think-Pair-Share!

Think (30 sec): How can we use LQR to swing up a pendulum and stabilize it there? What does the optimal solution look like?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Iterative LQR (iLQR)

iLQR in action!
$\stackrel{(G) \rightarrow}{ } \rightarrow 23.9$

Abbeel et al

Whole-Arm Manipulation
Target Position: 0.2 m forward

Kurtz and Lin
https://arxiv.org/pdf/2202.13986.pdf

Iterative LQR (ILQR)

Goal: Solve a general continuous time MDP

Iterative LQR (ILQR) - Spill the beans!

Three simple steps!

Step 1: Forward pass - roll out current guess $u(t)$
Step 2: Linearize dynamics, quadricize cost around roll out
Step 3: Backwards pass - compute LQR gains K_{t} at each time

How I learned ILQR ..

Suffer through a barrage of matrix derivations!
(And god forbid you flip a sign...)

Dynamic Programming (Value-Iteration) Backup
Assume wc have now a control policy of the form of a "feceflorward" update term k_{t} and fecdback term K_{T} that is a
lincar controller response to "crrons" in z_{T} :
$v_{T}=K_{T} z_{T}+k_{T}$,
(2.7.1)

Inductively, we assume the next state value function (ie. of the future timestep) can be written in the form,

$$
h_{1+1}=\frac{1}{2} z_{r+1} V_{1+1} z_{r}+G_{r+1} z_{i+1}+W_{r+1} \text {. }
$$

Since $\quad z_{i+1}-A z_{1}+B j_{1}$

$-\left(A+B K_{T}\right) z_{T}+B k_{T}$,

$2)^{2}$
$J_{T+1}=\frac{1}{2}\left(\left(A+B K_{r}\right) z_{r}+B k_{r}\right)^{T} V_{T+1}\left(\left(A+B K_{r}\right) z_{1}+B k_{r}\right)+G_{r+1}\left(\left(A+B K_{1}\right) \Sigma_{r}+B k_{r}\right)+W_{r-} \quad$ ($\left.2,7,6\right)$
$=\frac{1}{2} \bar{T}_{T}^{T}\left(A+B K_{r}\right)^{T} V_{T}{ }_{1}\left(A+B K_{i}\right) z_{r}+\frac{1}{2} k_{T}^{T} B^{T} V_{T+1} B k_{1}+k_{T}^{T} B^{T} V_{T+1}\left(A+B K_{i}\right) z_{r} \quad$ (2.7.7) $+C_{T-1}\left(A+B K_{T}\right) z_{T}+C_{T-1} B k_{T}+W_{T-1}$ (2.7.8) $=\frac{1}{2} z_{T}^{T}\left(A+B K_{i}\right)^{T} V_{r} V_{1}\left(A+B K_{i}\right) z_{i}+\left(k_{T}^{T} B^{T} V_{T+1}\left(A+B K_{i}\right)+G_{\left.\left.r_{11}\left(A+B K_{i}\right)\right) z_{r} \quad \text { (2.7.9) }\right)}\right.$ $+G_{T-1} B k_{T}+\frac{1}{2} k_{T}^{T} A^{T} V_{T-1} B k_{T}+W_{T-1}$
daitionally, we can write the cost $\mathrm{c}_{\mathrm{T}}\left(z_{\mathrm{T}}, v_{\mathrm{T}}\right)$ as

$=\frac{1}{2} z_{T}^{T} Q z_{T}+z_{T}^{T} P K_{T I} z_{T}+k_{T}^{T} P^{T} z_{T}+\frac{1}{2} z_{T}^{T} K_{T}^{T} R K_{T} z_{T}+\frac{1}{2} k_{T}^{T} R k_{T}+k_{T}^{\top} R K_{T} z_{T}+g_{x}^{T} z_{T}$
$+8_{u}^{T} K_{T} z_{T}+8_{u}^{T} k_{T}+c$

Then, we can write $l_{i}-c_{r}\left(z_{i}, v_{i}\right)+J_{r+1}-\frac{1}{2} z_{T} T_{T} V_{z_{1}}+G_{r} z_{r}+W_{i}$ by combining like terms from above, where
$V_{T}=Q+2 P K_{T}+K_{T}^{T} R K_{r}+\left(A+B K_{T}\right)^{T} V_{T} \quad\left(A+B K_{r}\right) \quad(2,7,15)$
$G_{1}-k_{T}^{T} P^{T}+k_{T}^{T} R K_{T}+8_{x}^{T}+8_{A}^{T} K_{T}+k_{T}^{T} B^{T} V_{T+1}\left(A+B K_{i}\right)+G_{T+1}\left(A+B K_{T}\right) \quad$ (2.7.16)
$W_{T}=\frac{1}{2} k_{T}^{T} R k_{T}+g_{a}^{T} k_{T}+c+G_{T+1} B k_{T}+\frac{1}{2} k_{1}^{T} A^{T} V_{T-1} B k_{T}+W_{T-1} \quad$ (2.7.77)
We find the control policy by minimizing I_{T} with respect to ${ }_{~_{T}}$.

$$
v_{T}=\min c_{T}+I_{T+1}
$$

$=z_{T}^{\top} P_{v_{T}}+{ }_{2}^{1} v_{T}^{\top} R v_{T}+g_{n}^{T} v_{T}+{ }_{2}^{1}\left(A A_{T}+B v_{T}\right)^{\top} V_{T+1}\left(A \Sigma_{T}+B v_{T}\right)+G_{T+1}\left(A \Delta_{T}+B v_{T}\right) \quad$ (2.7,19)
$=\left(z_{T}^{T} P+z_{T}^{T} A^{\prime} V_{T+1} B\right) v_{T}+\left\{G_{T+1} B+g_{u}^{\prime}\right) v_{T}+{ }_{2}^{1} v_{T}^{T}\left(R+B^{T} V_{T+1} B\right) v_{T} \quad(2,7,20)$

Strategy: Build up on LQR

Iterative LQR

$$
\begin{gathered}
x_{t+1}=\left.\frac{\partial f}{\partial x}\right|_{x_{t}} \delta x_{t}+\left.\frac{\partial f}{\partial u}\right|_{u_{t}} \delta u_{t}+f\left(x_{t}^{*}, u_{t}^{*}\right) \\
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+x_{t}^{o f f} \\
x_{t+1}=A_{t} x_{t}+B_{t} u_{t} \\
x_{t+1}=A x_{t}+B u_{t}
\end{gathered}
$$

Strategy: Build up on LQR

Iterative LQR

Time-varying LQR

$$
\begin{aligned}
& x_{t+1}=A x_{t}+B u_{t} \\
& x_{t+1}=A x_{t}+B u_{t}
\end{aligned}
$$

Strategy: Build up on LQR

Iterative LQR

Time-varying LQR

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}
$$

$$
x_{t+1}=A x_{t}+B u_{t}
$$

Strategy: Build up on LQR

Iterative LQR

Affine LQR

Time-varying LQR

Strategy: Build up on LQR

Iterative LQR

Affine LQR

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+x_{t}^{o f f}
$$

Strategy: Build up on LQR

Iterative LQR

Affine LQR

$$
\sqrt[x_{t+1}]{ }=A_{t} x_{t}+B_{t} u_{t}+x_{t}^{o f f}
$$

Strategy: Build up on LQR

Iterative LQR

$$
x_{t+1}=\left.\frac{\partial f}{\partial x}\right|_{x_{i}} x_{t}+\left.\frac{\partial f}{\partial u}\right|_{u_{t}} \delta u_{t}+f\left(x_{t}^{*}, u_{t}^{*}\right)
$$

The iLQR Algorithm

1. Propose some initial (feasible) trajectory $\left\{x_{t}, u_{t}\right\}_{t=0}^{T-1}$
2. Linearize the dynamics, f about trajectory:

$$
\left.\frac{\partial f}{\partial x}\right|_{x_{t}}=A_{t},\left.\quad \frac{\partial f}{\partial u}\right|_{u_{t}}=B_{t}
$$

Linearization can be obtained by three methods:
(a) Analytical: either manually or via auto-diff, compute the correct derivatives.
(b) Numerical: use finite differencing.
(c) Statistical: Collect samples by deviations around the trajectory and fit linear model.
3. Compute second order Taylor series expansion the cost function $c(x, u)$ around x_{t} and u_{t} and get a quadratic approximation $c_{t}\left(\tilde{x}_{t}, \tilde{u}_{t}\right)=\tilde{x}_{t}^{\top} \tilde{Q}_{t} \tilde{x}_{t}+\tilde{u}_{t}^{\top} \tilde{R}_{t} \tilde{u}_{t}$ where the $\tilde{x}_{t}, \tilde{u}_{t}$ variables represent changes in the proposed trajectory in homogenous coordinates. ${ }^{12}$
4. Given $\left\{A_{t}, B_{t}, \tilde{Q}_{t}, \tilde{R}_{t}\right\}_{t=0}^{T-1}$, solve an affine quadratic control problem and obtain the proposed feedback matrices (on the homogeneous represenation of x).
5. Forward simulate the full nonlinear model $f(x, u)$ using the computed controls $\left\{u_{t}\right\}_{t=0}^{T-1}$ that arise from feedback matrices applied to the sequence of states $\left\{x_{t}\right\}_{t=0}^{T-1}$ that arise from that forward simulation.
6. Using the newly obtained $\left\{x_{t}, u_{t}\right\}_{t=0}^{T-1}$ repeat steps from 2.

Approximations always hurt

\#1: Q and R not PSD / PD

Quadracizing non-convex cost function

\#1: Q and R not PSD / PD

Quadracizing non-convex cost function

$$
\Sigma=\left[\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right] \longrightarrow \Sigma=\left[\begin{array}{ll}
6 & 0 \\
0 & 0
\end{array}\right]
$$

\#1: Q and R not PSD / PD

Quadracizing non-convex cost function

\#2: Approximation Errors Compound

\#2: Approximation Errors Compound

Slowly change controls

$$
u=(1-\alpha) u_{\text {old }}+\alpha u_{\text {new }}
$$

\#2: Approximation Errors Compound

Trust region: Control and state sampling

$$
c_{n e w}(x, u)=c(x, u)+\lambda_{x}| | x-x_{\text {old }}| |+\lambda_{u}| | u-u_{\text {old }}| |
$$

(Penalize deviations from old state / control)

How general is this idea?

\#1: Cover the world with funnels

\#2: Replace linear/quadratic with a LEARNER

$$
\text { for } \mathrm{i}=1 \ldots . . \mathrm{N}
$$

Roll-out current policy

Train model from collected data!

Update policy

tl;

LQR is
fundamentally a way
to
locally approximate
and
update value functions

Strategy: Build up on LQR

$$
\begin{gathered}
x_{t+1}=\left.\frac{\partial f}{\partial x}\right|_{x_{t}} \delta x_{t}+\left.\frac{\partial f}{\partial u}\right|_{u_{t}} \delta u_{t}+f\left(x_{t}^{*}, u_{t}^{*}\right) \\
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+x_{t}^{\text {off }} \\
x_{t+1}=A_{t} x_{t}+B_{t} u_{t} \\
x_{t+1}=A x_{t}+B u_{t}
\end{gathered}
$$

