
Iterative Linear Quadratic Regulator

Sanjiban Choudhury

1

2

LQR is cute…

But what if my

robot is not linear?

3

4

LQR is

fundamentally a way

to

locally approximate

and

 update value functions

Activity!

Think-Pair-Share!

6

Think (30 sec): How can we use LQR to swing up a pendulum and
stabilize it there? What does the optimal solution look like?

Pair: Find a partner

Share (45 sec): Partners exchange

 ideas

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

7

Iterative LQR (iLQR)

https://www.youtube.com/watch?v=anIsw2-Lbco

8

iLQR in action!

Abbeel et al Aurora

Kurtz and Lin

https://arxiv.org/pdf/2202.13986.pdf

Iterative LQR (ILQR)

9

Goal: Solve a general continuous time MDP

min
x0:T−1,u0:T−1

T−1

∑
t=0

c(xt, ut)

xt+1 = f(xt, ut)

Nonlinear!

Nonlinear!

Iterative LQR (ILQR) - Spill the beans!

10

Three simple steps!

Step 1: Forward pass - roll out current guess u(t)

Step 2: Linearize dynamics, quadricize cost around roll out

Step 3: Backwards pass - compute LQR gains at each timeKt

How I learned ILQR ..

11

Suffer through a barrage of

matrix derivations!

(And god forbid you flip a sign…)

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affine LQR xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

12

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affi xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

13

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affi xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

14

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affi xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

15

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affine LQR xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

16

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affine LQR xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

17

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Iterative LQR xt+1 =
∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affi xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

18

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

The iLQR Algorithm

19

lqr: the analytic mdp 31

2.4 Iterative LQR (iLQR)

So far, we have seen how to use LQR to solve problems with linear
(or affine) dynamics and quadratic costs. However, real world sys-
tems will only rarely be close to linear. 10 10 There is a well-known saying among

control theorists,

Classifying systems as linear
and nonlinear is like classify-
ing the Universe as bananas
and non-bananas.

Differential Dynamic Programming (DDP) 11 is a general approach 11 D. H. Jacobson and D. Q. Mayne.
Differential Dynamic Programming.
Elsevier, 1970

to using quadratic approximations of the value function to solve a
broader class of control problems than merely linear-Gaussian. It-
erative LQR (iLQR) is a simplified variant of DDP, an approach that
repeatedly solves LQR (actually affine!) problems to solve for a lo-
cally optimal change to a trajectory and a controller around that. The
idea of iLQR is very closely related to Newton’s method (where we
first approximate the objective function to a quadratic function, mini-
mize it, and iterate until convergence). In iLQR, we first approximate
the dynamics with an affine model and approximate the cost func-
tion with a quadratic function. Crudely speaking, we then solve the
LQR problem for the resulting approximate problem, and iterate the
process until convergence.

The algorithm

The general iLQR strategy is as follows:

1. Propose some initial (feasible) trajectory {xt, ut}T�1
t=0

2. Linearize the dynamics, f about trajectory:

∂ f
∂x

����
xt

= At,
∂ f
∂u

����
ut

= Bt

Linearization can be obtained by three methods:

(a) Analytical: either manually or via auto-diff, compute the correct
derivatives.

(b) Numerical: use finite differencing.

(c) Statistical: Collect samples by deviations around the trajectory
and fit linear model.

3. Compute second order Taylor series expansion the cost func-
tion c(x, u) around xt and ut and get a quadratic approximation
ct(x̃t, ũt) = x̃>

t Q̃t x̃t + ũ>
t R̃tũt where the x̃t, ũt variables represent

changes in the proposed trajectory in homogenous coordinates. 12 12 We haven’t derived using homoge-
neous coordinates in control; it’s essen-
tially equivalent to simply completing
the square and finding a “nominal”
control. Instead of pursuing yet an-
other step-wise generalization, in the
appendix to these notes presents the
general derivation.

4. Given {At, Bt, Q̃t, R̃t}T�1
t=0 , solve an affine quadratic control prob-

lem and obtain the proposed feedback matrices (on the homoge-
neous represenation of x).

32 draft: modern adaptive control and reinforcement learning

5. Forward simulate the full nonlinear model f (x, u) using the com-
puted controls {ut}T�1

t=0 that arise from feedback matrices applied
to the sequence of states {xt}T�1

t=0 that arise from that forward sim-
ulation.

6. Using the newly obtained {xt, ut}T�1
t=0 repeat steps from 2.

Issues with iLQR

• Q and R can be indefinite when the actual cost function is not
convex. Hacks that are typical in the literature include:

– Projection: Q = U S|{z}
set negative Eigenvalues to 0

U>. Formally, this

can be shown as finding the closest (in L2 sense cost matrix that
actually is PSD.

– Regularize: Increase the diagonal values until Q becomes posi-
tive definite: Q = Q + lI

• Trust regions: Sometimes the approximation of the cost function
is poor and in such cases its a good idea to restrict the step size
(deviation from the trajectory of the previous iteration) while
executing the control. This can be accomplished in the following
ways:

– interpolate between the control at current iteration and the
previous iterations

– Modify cost to penalize derivation from the trajectory of the
previous iteration:

c̃ = c + a · (penalty for deviation from the previous trajectory in controls or states)

These last known as control and state damping are extremely com-
mon in real-world implementations.

• Some notes:
LQR recieved significant practical criticism in the 1970s as it was
difficult to prevent the resulting synthesized controllers from ex-
citing dynamics that were under-modeled. Without care, LQR
(particularly using filtered estimates of the true state, rather than
“oracle” access to the true state) will often generate, “stiff”, high
frequency controls that are not robust. Some common modifi-
cations to damp high frequency control from being generated
include:

– Penalize changes in control from previous control. This is to
ensure that the control is smooth. Higher order of smoothness
can be obtained by passing the control signal through a filter,

20

Approximations always hurt

21

#1: Q and R not PSD / PD
Quadracizing non-convex cost function

22

#1: Q and R not PSD / PD
Quadracizing non-convex cost function

Q = UΣUT

Eigen-value

decomposition

Set negative
eigen values to 0

Σ = [6 0
0 −4] Σ = [6 0

0 0]

23

#1: Q and R not PSD / PD
Quadracizing non-convex cost function

Q = Q + λI

Increase diagonal values

λ = 4

24

#2: Approximation Errors Compound

25

#2: Approximation Errors Compound

Slowly change controls

u = (1 − α)uold + αunew

26

#2: Approximation Errors Compound

Trust region: Control and state sampling

cnew(x, u) = c(x, u) + λx | |x − xold | | + λu | |u − uold | |

(Penalize deviations from old state / control)

27

How general

is this idea?

#1: Cover the world with funnels

28

29

https://www.youtube.com/watch?v=cESFpLgSb50

#2: Replace linear/quadratic with a LEARNER

30

for i = 1 ….. N

Roll-out current policy

Linearize dynamics,

Quadricize costs about traj

Update policy

Train model from

collected data!

31

tl;dr

Iterative LQR xt+1 = ∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affine LQR xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

 X

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

 X

Approximations always hurt

#1: Q and R not
PSD / PD

#2: Approximation
Errors Compound

 X

LQR is
fundamentally a way

to
locally approximate

and
 update value functions

