Linear Quadratic Regulator:

 The Analytic MDP

 The Analytic MDP}

Sanjiban Choudhury

It's time to bring in the robots!

The Inverted Pendulum: A

 fundamental dynamics model
Humanoid balancing

Rocket landing

Why not discretize the dynamics and apply value / policy iteration?

THE CURSE OF DIMENSIONALITY

1D: $\mathbf{1 0}^{1}$

\section*{| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |}

No Discretization!

Can we analytically represent and update the value function?
$V^{*}(s)=\min _{a}\left[c(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{*}\left(s^{\prime}\right)\right]$

Time: 0


```
\[
V^{*}(s)=\min _{a}\left[c(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{*}(s)\right]
\]
```


Can represent analytically ... (piecewise linear?)

But updating seems hard!

Can we analytically represent and

 update the value function?
Yes*

*linear dynamics, quadratic costs

Let's formalize!

It's quadratics all the way down!

The LQR Algorithm

Initialize $V_{T}=Q$
For $\mathrm{t}=\mathrm{T} . . .1$

Compute gain matrix

$$
K_{t}=\left(R+B^{T} V_{t+1} B\right)^{-1} B^{T} V_{t+1} A
$$

Update value
$V_{t}=Q+K_{t}^{T} R K_{t}+\left(A+B K_{t}\right)^{T} V_{t+1}\left(A+B K_{t}\right)$

Value Iteration for Inverted Pendulum

Value
converges when system is stabilizable
Can solve Ricatti equations for fixed point

Value Iteration for Inverted Pendulum

An Easy Starting Point

Another Easy Starting Point

A Hard Starting Point

Another Hard Starting Point

When does LQR converge?

$$
\begin{gathered}
V=Q+K^{T} R K+(A+B K)^{T} V(A+B K) \\
K=\left(R+B^{T} V B\right)^{-1} B^{T} V A
\end{gathered}
$$

When the closed loop system is stable, i.e.
Eigen values of $(\mathrm{A}+\mathrm{BK})$ are inside the unit circle on the complex plane

When does LQR converge?

$$
\begin{gathered}
V=Q+K^{T} R K+(A+B K)^{T} V(A+B K) \\
K=\left(R+B^{T} V B\right)^{-1} B^{T} V A
\end{gathered}
$$

When the closed loop system is stable, i.e.
Eigen values of $(\mathrm{A}+\mathrm{BK})$ are inside the unit circle on the complex plane
How can we find the fixed point of this equation?
Discrete time algebraic ricatti equation (DARE)

https://en.wikipedia.org/wiki/Algebraic_Riccati_equation

What if Q is not PSD?

$x^{T} Q x \nsupseteq 0$

$$
Q=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

What if R is not positive definite?

$$
u^{T} R u \ngtr 0 \quad R=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Hint: Gain matrix update?

$$
K_{t}=\left(R+B^{T} V_{t+1} B\right)^{-1} B^{T} V_{t+1} A
$$

tl;dr

THE CURSE OF DIMENSIONALITY

It's quadratics all the way down!
The LQR Algorithm
Initialize $V_{T}=Q$
For $\mathrm{t}=\mathrm{T} . . .1$
Compute gain matrix
$K_{t}=\left(R+B^{T} V_{t+1} B\right)^{-1} B^{T} V_{t+1} A$

Update value
$V_{t}=Q+K_{t}^{T} R K_{t}+\left(A+B K_{t}\right)^{T} V_{t+1}\left(A+B K_{t}\right)$

