Large Language Models and
Task Planning

Sanjiban Choudhury

Lornell Bowers C1S
Computer Science

The Problem

What do we want from Personal Robots?
Y B[

r 9

a ",'.
.I-\
$
.
+
-

A
2 ,’; |
e - »'.;.". ;.
.(\‘. b
Sl BB asingly conslex 't
;

(Google, 2022] * Tesla, 2023]

2X Speed

Every home is different

]
s Ll |1

S B N BN
’ <~

1
¢

11111
—

L

The way we program robots today is ... rigid!

~

Choose option

1. Start
2. Clean
3. Stop

Engineers hand-craft behaviors Ship robot Frustrate users!

Cannot be flexibly re-programmed by everyday users

Instead of explicitly
engineering behaviors

Can we implicitly program
robots via natural interactions?

Programming via natural interactions

Demonstrations,
Language

-~
4N

Feedback,
Interactive QA

Question: How do we translate between humans and robots?

\
~
\
o\
o

L

Large Language Models to the rescue!

D
13 X
) 3 {B PYPC
i ¢
. 9 4 raver! Succeed® of
¥ 2 |<>
2] \ A

overd pewe =) WakT B Porr)

HandorSocceaiD 8 Morfoer({"Agree’) everiprce

AA . =X event pree >4

)
|
i
|
y
\
&\
<

L

An Example

HAL
Helping Out In the Kitchen

(Home Apprentice Learner)

PORTA

Think-Pair-Share!

Think (30 sec): Think of all the steps to go from what the human
said to the code the robot has to execute.

Human: “"Help me make vegetable soup”
Pair: Find a partner

Share (45 sec): Partners exchange Ropot:
ideas

13

g
0

How things

.\ -

workea
pre-LLM

Two Fundamental Challenges

Two Fundamental Challenges

Challenge 1:
Ground natural language
in robot state

"Pick up the farthest red block on the lefi

(ﬂ' 4 \\ A

L, ! | v

16

Two Fundamental Challenges

Challenge 1 Challenge 2:
Ground natural language Planning actions to
in robot state solve a task

"Pick up the farthest red block on the lefi

Find “salt”

/

md pepper’

17

Two Fundamental Challenges

Challenge 1:
Ground natural language
in robot state

"Pick up the farthest red block on the lefi

2 h a

! | v

18

What is grounding? Why is it hard?

"Pick up the farthest red block on the left

1 Rt
| W,
R N o

z

19

Grounding: Mapping language to robot's internal state

MDP

Natural Language

"Pick up the farthest

a7
red block” <5,A,R,J >

20

Grounding: Mapping language to robot's internal state

Natural Language

"Pick up the farthest
red block”

@
objl

obj2

obj3

obj4

MDP

Cr
R, T >
on(‘objl1’,’'table’)
on(‘obj2’, "table’)
on(‘obj3’, 'table’)
on(‘obj4’,'table’)
left(‘obj2’,’0bj1’")
left(‘obj3’,’'0obj2")
left(‘obj4’,'0obj3’")

21

Grounding: Mapping language to robot's internal state

MDP

Natural Language

"Pick up the farthest
red block”

R(in(obj4, hand)) = +1

@
objl obj2 o0bj3 obj4

22

How did we solve grounding?’

| | "Pick up the farthest
Train this on small, custom od block”

robot datasets!

Complex
graphical
models!
3]
objl1 obj2 obj3 obj4 R(in(obj4, hand)) = +1

Misra et al. Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions

23

Why did this not scale?

"Pick up the farthest red block on the left

("“\ A
| .
' ! l J !

Failure to generalize to different
human utterances

Failure to capture common sense

Failure to capture complex
instructions (while loops)

24

Two Fundamental Challenges

Challenge 2:

Planning actions to
solve a task

Find “salt” Find “pepper”

/

25

What is task planning? Why is it hard?

shelf Take the apple from the shelf and

ap- put it on the table

robot

table

20

What is task planning? Why is it hard?

shelf Take the apple from the shelf and

a6 - put it on the table

1. Move to the shelf
robot 2. Pick up the apple
. 3. Move back to the table

- 4. Place the apple

table

27

What is task planning? Why is it hard?

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

28

What is task planning? Why is it hard?

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, shely \MOVG (shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)

table

29

What is task planning? Why is it hard?

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, sbel:/ \‘Move(shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)
table
Move (shelf, table) Place (apple, shelf)
(At robot table) (At robot shelf)
(Holding robot apple) (At apple shelf)

(HandEmpty robot)

30

What is task planning? Why is it hard?

shelf

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, shelV \Move (shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)
table
Move (shelf, table) Place (apple, shelf)
(At robot table) (At robot shelf)
(Holding robot apple) (At apple shelf)

(HandEmpty robot)
Place (apple, table)
Move (table, shelf)

(At robot table)

(At apple table) (Ag robot shelf)
(Handé:;ty robot) (Holding robot apple)

31

What is task planning? Why is it

shelf

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, shel:/ \Move(shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)
table
Move (shelf, table) Place (apple, shelf)
(At robot table) (At robot shelf)
(Holding robot apple) (At apple shelf)
(HandEmpty robot)
Place (apple, table)
| (At robot table) |
goal (At apple table) | (At robot shelf)
state! | (HandEmpty robot) | (Holding robot apple)

hard?

32

What is task planning? Why is it hard?

(At robot shelf)
(At apple shelf)
(At banana shelf)

(HandEmpty robot)

Move (shelf, table) Pick (banana, shelf)
Move (shelf, Pick (apple,
desk) / \ shelf)
(At robot table) (At robot desk) (At robot shelf) (At robot shelf)
(At apple shelf) (At apple shelf) (At banana shelf) (At apple shelf)
(At banana shelf) (At banana shelf) (Holding robot apple) (Holding robot banana)
(HandEmpty robot) (HandEmpty robot)

33

How did we solve it?

Good old fashioned search!

| ots of heuristics to make it real time

Why did it not scale?

Combinatorially large search tree

Had no notion of common sense

34

Two Fundamental Challenges

Challenge 1 Challenge 2:
Ground natural language Planning actions to
in robot state solve a task

"Pick up the farthest red block on the lefi

Find “salt”

/

md pepper’

35

Episode

A NE W HQW

Many recent papers on LLM+4Task Planning

SayCan [Ichter et al.’22] Code-As-Policies [Liang et al.’22]

- B e s r e 1 o o Large
e e &8 Share Language
i : Model

<+—--- GStack the blocks on the empty bowl.

ept APls
Control APIs

block_names = detect_objects("blocks")
bowl_names = detect_obijects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name): —
empty_bowl = bowl_name
break e
objs_to_stack = [empty_bowl]|+ block_names .
stack_objects(objs_to_stack)‘

@0t the 10bot to help yith 2

l Policy Code

~lov 20U theow i IWay an

‘“i5ﬁ: e~ .:\\\ : {hz“"”' def is_empty(name):
User input: | spilled my coke on the ot l((bj))
. n_objs = len(obj_names
tab Ie, how would you throw it daway f°2b§@i2 ;@;’%ﬁgﬂg‘;ﬁi']}’: 404 & A

Also ProgPrompt [Singh et al. '22], InnerMonologue [Huang et al.’22], Socratic [Zeng et al.’22], TidyBot [Wu et al'23],
CLARIFY [Skreta et al.’23], Text2Motion [Lin et al. 23], ...

Can LLMs directly
predict robot action?

Do As | Can, Not As | Say:

Grounding Language in Robotic Affordances

Michael Ahn* Anthony Brohan* Noah Brown* Yevgen Chebotar” Omar Cortes” Byron David* Chelsea Finn”
Chuyuan Fu” Keerthana Gopalakrishnan® Karol Hausman* Alex Herzog* Daniel Ho” Jasmine Hsu* Julian Ibarz*
Brian Ichter” Alex Irpan® Eric Jang” Rosario Jauregui Ruano”® Kyle Jeffrey™* Sally Jesmonth* Nikhil Joshi*
Ryan Julian® Dmitry Kalashnikov” Yuheng Kuang® Kuang-Huei Lee* Sergey Levine® Yao Lu* Linda Luu* Carolina Parada*
Peter Pastor” Jornell Quiambao® Kanishka Rao* Jarek Rettinghouse* Diego Reyes” Pierre Sermanet” Nicolas Sievers®

Clayton Tan* Alexander Toshev” Vincent Vanhoucke® Fei Xia* Ted Xiao* Peng Xu* Sichun Xu” Mengyuan Yan* Andy Zeng*

g Robotics at Google . Everyday Robots
[E—

39

So ... we just ask an
LLM to tell us what to
do?

No! LLMs can say anything ..

| spilled my drink, can you help?

GPT3

FLAN

You could try using a
vacuum cleaner.

Do you want me to find
a cleaner?

I'm sorry, | didn't mean
to spill it.

42

ldea: Constrain LLM by what the robot can do
(affordance)

43

The “SayCan” Approach

Instruction Relevance with LLMs Combined Task Affordances with Value Functions
How would you put © Find an apple 00
an apple on the -30 Find a coke 0.6
table? -30 Find a sponge 0.6
4 Pick up the apple 0.2
| would: 1. ,
230 Pick up the coke 0.2
5 Place the apple 0.1
30 Place the coke 0.1 Value
L LM & -10 Go to the table 0.8 Functions
20 Go to the counter 0.8
[would: 1. Find an apple, 2. ¢

44

User input: Bring me a fruit flavoured drink without caffeine.

Robot: 1.

- Language x Affordance

find a grapefruit soda

find a lime soda

opl
find a redbull

0.00
find a 7up

0.00
go to the table

0.00

Can LLMs predict
robot code?

Code as Policies:
Language Model Programs for Embodied Control

Jacky Liang Wenlong Huang Fei Xia

Peng Xu Karol Hausman

6 Robotics at Google

Brian Ichter Pete Florence Andy Zeng

48

Different policy representations

Perception

Policy
,:; > ":.'.:'0
Task —> |O9K o 308 ’

Learn Robot Policies

Perception
Description

!

Planner

Large
— Language
Model

|

Description

Task
Description

Use LLMs to plan

Darcenti
Task Perception API

Description

|

Large
Language
Model

API

Qurs: Use LLMs to write
robot code

Interpretable

Verifiable

Composable

Why choose code as a representation?

Task Perception API

Description l
l Code
Large

Language —»
Model

g

Ours: Use LLMs to write
robot code

User

Large <+ --- Stack the blocks on the empty bowl. @
Language _ ol 4
Model APIs

Control APIs

............

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name): —
empty_bowl = bowl_name
break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stackl'

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) it
for 1 in range(n_objs - 1): S
objO = obj_names[1 + 1]
obj1l = obj_names[1i]
nick _place(objo, obj1)

51

Simple code generation examples

move rightwards until you see the apple.
while not detect_object("apple”):
robot.set_velocity(x=0, y=0.1, z=0)

do 1t again but faster, to the left, and with a banana.
while not detect_object("”banana”):
robot.set_velocity(x=0, y=-0.2, z=0)

52

How do we prompt LLMs to generate robot code?

1. Instructions

You are an Al assistant writing robot code given natural language
instructions. Please refer to the following APl guidelines ...

2. Import Hints

3. Few-shot Examples

53

Example: Using imported functions

objs = [’blue bowl’, ’red block’, ’red bowl’, ’blue block’]
move the red block a bit to the right.

target_pos = get_pos(’red block’) + [0.1, 0]
put_first_on_second(’red block’, target_pos)

put the blue block on the bowl with the same color.
put_first_on_second(’blue block’, ’blue bowl’)

54

Example: Using control flows

while the red block 1s to the left of the blue bowl, move 1t to the

right 5cm at a time.

while get_pos(’red block’)[@] < get_pos(’blue bowl’)[@]:
target_pos = get_pos(’red block’) + [0.05, @]
put_first_on_second(’red block’, target_pos)

55

Example: Hierarchical Code Generation

define function: get_ ObJS blgger than_area_th(obj_names, bbox_area_th).

def*get ObJS blgger than_area thMObJ names, bbox_area th)

P —————— _ —_

return [name for name 1n obj_names
1f get_obj_bbox_area(name) > bbox_area_th]

Have the LLM recursively define functions!

define function: get_obj_bbox_area(obj_name).
def get_obj_bbox_area(obj_name):
x1, y1, x2, y2 = get_obj_bbox_xyxy(obj_name)
return (x2 - x1) * (y2 - y1)

56

Verifiably solve a number of tasks!

Move the sky-colored block in between

Put the blocks in a horizontal line near the the red block and the second block from Arrange the blocks in a square around the
top the left middle Make the square bigger Move the red block 5cm to the bottom
Put the red block to the left of the Place the blocks in bowls with non- Put the blocks in a vertical line 20cm and
rightmost bowl| matching colors 10cm below the blue bowl Put the apple and the coke intheir corresponding bins
Wait until you see an egg and put it on the Draw a pyramid as a triangle on the

Move the fruits to the green plate and bottles to the blue plate green plate Draw a 5¢cm hexagon around the middle ground

Can LLMs convert
demonstrations (non-language)
to code?

Demo2Code: From Summarizing
Demonstrations to Synthesizing Code via
Extended Chain-of-Thought

NeurIPS 2023

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, Sanjiban Choudhury
Cornell University

User Story: Helping Grandma in the kitchen

Language Narration:

“Here's how to make vegetable fried rice.

Heat up some water. While the water boi/s keep
stirring vegetables. Pour rice.’

Personalized
Tasks

60

User Story: Helping Grandma in the kitchen

Language Narration:

“Here's how to make vegetable fried rice.
Ax Heat up some water. While the water boi/s keep
stirring vegetables. Pour rice.’

Personalized
Tasks

Robot
P =:° Code

Ig'l'

Language alone is insufficient to communicate the task

F &

x I_aCkS SpeCIfICIty (e.g. Heat up water how? Pour rice where?)

X Leaves out implicit preferences (ee Personal style of sirring?)

61

User Story: Helping Grandma in the kitchen

Language Narration:

“Here's how to make vegetable fried rice.
Heat up some water. While the water boi/s keep
stirring vegetables. Pour rice.’

Personalized
Tasks

Demonstrations:

Demonstrations
convey dense
information on how
states change

over(‘kettle’, in(‘spatula’, over(‘rice’,
‘left pan’) ‘hand’) ‘left pan’) 62

Language:
“Here's how to make vegetable fried rice.

Heat up some water. While the water
boils, keep stirring vegetables. Pour rice.”

+ LARGE | Robot
Demonstrations — | LANGUAGE — Code
MODELS!

—

(Sequence of states
represented as text)

over(‘kettle’, in(‘spatula’, over(‘rice’,
‘left pan’) ‘hand’) ‘left pan’)

Challenges

Challenge 1: Long Horizon Demonstrations

Long-horizon tasks can have >=hundreds of states

. 1 . [
. -

[Damen et al "18]

Multiple such demonstrations

Naively
concatenating
demonstrations will
easily exhaust
context length!

state 1 state 1

state_ 2 state_ 2

Challenge 2: Complex Task Code

Loops, checks, and calls to custom robot libraries ..

def main(): cook_object_at_location(obj, location): Pcf move_then_unstack(obj_to_unstack, obj_at_bottom, unstack_loc:

bottom_buns = get_all_obj_names_that_match_type('bottom bun') is_holding(obj): get_curr_location() get_obj_location(obj_at_bottom):
move(get_curr_location(), get_obj_location(obj_at_bottom
patties = get_all_obj_names_that_match_type('patty"') unstack(obj_to_unstack, obj_at_bottom)

tomatoes = get_all_obj_names_that_match_type('tomato"') is_in_a_stack(obj): get_curr_location() unstack_location:
move(get_curr_location(), unstack_location)
lettuces = get_all_obj_names_that_match_type('lettuce')
obj_at_bottom = get_obj_that_is_underneath(obj_at_top-obj) def move_then_pick(obj):
top_buns = get_all_obj_names_that_match_type('top bun') move_then_unstack(obj_to_unstack-obj, obj_at_bottom-obj_at_botto obj_location - get_obj_location(obj)
unstack_location-get_obj_location(obj_at_bottom)) get_curr_location() obj_location:
stoves = get_all_location_names_that_match_type('stove') : move(get_curr_location(), obj_location)
pick_up(obj, obj_location)
cutting_boards = get_all_location_names_that_match_type('cutting_boart move_then_pick(obj=obj)
move_then_place(obj, place_location):
move_then_place(obj-obj, -place_location location) get_curr_location() place_location:
stove_to_cook_at = stoves[0] move(get_curr_location(), place_location)
cook_until_is_cooked(obj-obj) place(obj, place_location)
patty_to_cook patties[@]
cook_object_at_location(obj-patty_to_cook, location-stove_to_cook_at) def-stack objl _on_obj2(obj1, -0bj2): cook_until_is_cooked(obj):
start_cooking(obj)
is_holding(obj1): is_cooked(obj):
bottom_bun_to_use - bottom_buns[@] noop()

move_then_stack(obj_to_stack, obj_at_bottom, stack_location)
stack_objl_on_obj2(objl patty_to_cook, obj2 bottom_bun_to_use) is_in_a_stack(objl): get_curr_location() stack_location:
move(get_curr_location(), stack_location)
stack(obj_to_stack, obj_at_bottom)
tomato_to_use -~ tomatoes[0] obj_at_bottom - get_obj_that_is_underneath(obj_at_top-objl)
move_then_unstack(obj_to_unstack-objl, obj_at_bottom-obj_at_bott def cut_until_is_cut(obj):
cut_object_at_location(obj tomato_to_use, location cutting_boards[@]) unstack_location-get_obj_location(obj_at_bottom)) is_cut(obj):
: cut(obj)

stack_objl_on_obj2(objl-tomato_to_use, obj2 patty_to_cook) move_then_pick(obj-objl)

obj2_location - get_obj_location(obj2)
lettuce_to_use ~ lettuces|[@]
move_then_stack(obj_to_stack-objl, obj_at_bottom-obj2, stack_location

cut_object_at_location(obj-lettuce_to_use, location cutting_boards|[@]. obj2_location)

def cut_object_at_location(obj, location):

stack objl on obj2(objl lettuce_to_use, obj2 tomato_to_use)
is_holding(obj):

top_bun_to_use - top_buns[@]
is_in_a_stack(obj):

stack_objl_on_obj2(objl-top_bun_to_use, obj2 lettuce_to_use)
obj at bottom = get obj that is underneath(obj at to

Challenge 1: Challenge 2:
Long Horizon Demonstrations

Directly generating code from demonstrations is intractable!

70

Both

demonstration and code
share a latent, compact,

specification

/1

Make a burger.

State 5:
'robot' 1s not holding
'pattyl'
'pattyl' 1s at 'stovel'

State 9:
'pattyl' 1s cooked

State 12:

'robot' 1s not holding
'pattyl'

'pattyl' 1s on top of
‘bottom bunl'

Make a burger with one patty and one

lettuce.
Specifically:
Cook a patty at that stove.

Stack that top bun on that lettuce.

Specification

Cook object at location
def (obj,
loc):

if not is _holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

Move to a location and place

object

def move then place(obj, loc):
curr_loc = get _curr loc()
if curr loc !'= loc:

move(curr loc, loc)
place(obj, place location)

def main():

(patty,
stove)

stack objects(top_ bun,
lettuce)

Directly going from demo to code is hard ...

Cook object at location
def (obj,
loc):
if not is_holding(obj):
Make a burger.
move then place(obj, loc)
cook until is cooked(obj)

State 5:

'robot' is not holding # &ove to a location and place
'pattyl'’ object

def move then place(obj, loc):
curr loc = get _curr loc()
if curr loc != loc:

'pattyl' 1s at 'stovel'

move(curr_loc, 1loc)
place(obj, place location)

State 9:
'pattyl' 1s cooked

def main():

State 12: C

'robot' 1s not holding (patty,
'pattyl’ stove)

1 1 :

pattyl' 1s on top of ca

‘bCﬂ?tOHL}NJnl' stack objects(top bun,

lettuce)

Key Insight: Extended chain-of-thought

Make a burger.

State 5:
'robot' 1s not holding
'pattyl'
'pattyl' 1s at 'stovel'

State 9:
'pattyl' 1s cooked

State 12:

'robot' 1s not holding
'pattyl'

'pattyl' 1s on top of
‘bottom bunl'

Specification

Every step along the chain
is small and easy for LLM

Cook object at location
def (obj,
loc):

if not is_holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

Move to a location and place
object
def move then place(obj, loc):
curr loc = get _curr loc()
if curr loc != loc:
move(curr_loc, 1loc)
place(obj, place location)

def main():

(patty,
stove)

stack objects(top bun,
lettuce)

Demo2Code

Make a burger.

State 5:
'robot' 1s not holding
'pattyl'
'pattyl' 1s at 'stovel'

State 9:
'pattyl' 1s cooked

State 12:

'robot' 1s not holding
'pattyl'

'pattyl' 1s on top of
‘bottom bunl'

Make a burger with one patty and one

lettuce.

Specifically:

Cook a patty at that stove.

Stack that top bun on that lettuce.

Stage 1
Recursive summarize
demo to specification

I

Stage 2
Recursive expand
specification to task code

Demo2Code: Recursive Summarization and Expansion

Cook object at location
def (obj,
loc):

if not is_holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

Move to a location and place
object
def move then place(obj, loc):
curr loc = get _curr loc()
if curr loc != loc:
move(curr_loc, 1loc)
place(obj, place location)

def main():

(patty,
stove)

stack objects(top bun,
lettuce)

[Scenario 1]
Make a burger.

State 2: St 1 .
'pattyl' is not at 'tablel' age .

'robotl' is holding 'pattyl' _

State 3: e © 0 o e o 0 o R

'robotl' is at 'stove2' ecu rSIVe
'robotl' is not at 'tablel' . .
Summarization
'pattyl' is at 'stove2'

'robotl' is not holding 'pattyl'

otate 5:

otate 6:

otate 7:

State 8: [Scenario 2]

'pattyl' is cooked Make a burger.

otate 9:

'pattyl' is not at 'stove2' State 2:

'robotl' is holding 'patty1l' 'patty3' is not at 'table6'
State 10: 'robotl' is holding 'patty3'
'robotl' is not at 'stove2' State 3:

'robotl' is at 'table3' 'robotl' is at 'stove3'

State 11: 'robotl' is not at 'tableé6'
'pattyl' is at 'table3' State 4:

'pattyl' is on top of 'bottom buni' 'patty3' is at 'stove3'

'robotl' is not holding 'patty1l' 'robotl' is not holding 'patty3’
State 12: State 5-°

'robotl' is not at 'table3' State 6:

State 35: State 35:

'top _bun3' 1is at 'table5' 'top bun3' is at 'table5'

'top _bun3' 1is on top of 'lettuce3' 'top bun3' is on top of 'lettuce3'

'robotl' is not holding 'top_bun3'’ 'robotl' is not holding 'top bun3'

Stage 1:
Recursive
Summarization

* In [Scenario 1], at state 2, the robot picked up 'pattyl'.
* At state 3, the robot moved to 'stove2'.

* At state 4, the robot placed 'pattyl' on 'stove2'.

* At state 5-7, the robot has cooked 'pattyl'.

* At state 8, the robot has finished cooking 'pattyl'.

* At state 9, the robot picked up ‘pattyl’'.

* At state 10, the robot moved to 'table3'.

* At state 11, the robot placed 'pattyl' on top of 'bottom buni'.
* At state 12, the robot moved to 'table6'.

* At state 13, the robot picked up 'tomatol'.

* At state 14, the robot moved to 'cutting boardl'.

*

At state 33, the robot picked up 'top bunil'.

* At state 34, the robot moved to 'table3'.

* At state 35, the robot placed 'top bunil' on top of 'lettucel'.
<* In [Scenario 2], at state 2, the robot picked up 'patty3'.

* At state 3, the robot moved to 'stove3'.

* At state 4, the robot placed 'patty3' at location 'stove3'.

* At state 35, the robot stacked 'top bun3' on top of 'lettuce3'.

Stage 1:
Recursive
Summarization

-

* In [Scenario 1], at state 2-8, the subtask is "cook", because: At state 5-7,
the robot has cooked 'pattyl'. The robot cooked a patty at a stove, where the
patty 1s 'pattyl', and the stove is 'stove2'.

* At state 9-21, the subtask is "stack", because: At state 11, the robot placed
'pattyl' on top of 'bottom bunil'.

At state 23-28, the subtask is "cut'", because:

At state 29-35, the subtask is "stack'", because:

In [Scenario 2], at state 2-8, the subtask is "cook", because:

At state 9-11, the subtask is "stack'", because:

At state 13-18, the subtask is "cut'", because:

At state 19-21, the subtask is "stack'", because:

At state 23-28, the subtask is "cut'", because:

At state 29-31, the subtask is "stack'", because:

At state 33-35, the subtask is "stack'", because:

* % %k * ok * * ¥ *

e 6 o o e 6 o o
* The order of high level actions is: ['cook', 'stack', 'cut', 'stack',
'cut', 'stack']
* In [Scenario 1], 'stove2' 1is always used for cooking. In [Scenario 2],

'stove3' is always used for cooking. We assume that we just need to decide
a random stove to use in the beginning. Then, we can keep using the same
stove.

* In both scenarios, 'cutting boardl' is used for cutting the lettuce and
tomato. We assume that we just need to use 'cutting boardl' for cutting.

Thus:
Make a burger.

Specifically:
Get a list of all the bottom buns in the kitchen.
Get a list of all the patties in the kitchen.

Declide a stove to use.
Cook a patty at that stove.

Stage 1.
Recursive
Summarization

-
=
1

Stage 2:

Recursive

Expansion

from perception_utils import get_all_obj_names_that_match_type,

Get a list of all the bottom buns i1n the kitchen.
bottom_buns = get_all _obj_names_that_match_type('bottom bun')
Get a list of all the patties in the kitchen.

patties = get_all_obj_names_that_match_type('patty"')

Decide a stove to use.

stove_to cook at = stoves|[0]

Cook a patty at that stove.

Decide a patty to cook.

patty to_cook = patties[0]

cook_object_at_location(obj=patty_to_cook, location=stove_to_cook_at)

82

Stage 2:
Recursive
Expansion

from robot_utils import is_holding, is_in_a_stack, get_obj_that_is_underneath

def cook_object_at_location(obj, location):
To cook an object, the robot first needs to be holding obj
if not is_holding(obj):
If the robot is not holding obj, there are 2 scenarios:
(1) if obj is in a stack ,unstack obj
(2) else, pick up obj.
if is_in_a_stack(obj):
Because obj is in a stack, robot need to move then unstack the obj
from the obj_at_bottom first
obj_at_bottom = get_obj_that_is_underneath(obj_at_top=o0bj)
move_then_unstack(obj_to_unstack=obj, obj_at_bottom=obj_at_bottom,
unstack_location=get_obj_location(obj_at_bottom))
else:
Since obj 1s not in a stack, robot can just move then pick it up
move_then_pick(obj=obj)
place the object at the location to cook at
move_then_place(obj=o0bj, place_location=1location)
cook the object
cook_until_is_cooked(obj=o0bj)

83

Stage 2:
Recursive
Expansion

from perception_utils import get_curr_location, get_obj_location, is_cooked
from action_utils import move, unstack, start_cooking, noop

def move_then_unstack(obj_to_unstack, obj_at_bottom, unstack_location):

def

For unstacking, we need to move to the location of the bottom object
if get_curr_location() !'= get_obj_location(obj_at_bottom):
move(get_curr_location(), get_obj_location(obj_at_bottom))
unstack(obj_to_unstack, obj_at_bottom)
After unstacking, we need to move to the unstack_location
if get_curr_location() != unstack_location:
move(get_curr_location(), unstack_location)

cook_until_is_cooked(obj):

start_cooking(obj)

while not is_cooked(obj):
noop ()

34

Challenge 1: Challenge 2:
Long Horizon Demonstrations Complex Task Code

-
[1 § ~
’IA:"‘ ' |_‘: .'
Y

L

11111
1]

Solution 1: " Solution 2:

Recursively Recursively expand
summarize demo specification to
to specification task code

Experiments

Procedurally
generated
environment
and recipes

Demo2Code generates correct code that passes unit tests

Task Lang2Code[30] DemoNoLang2Code Demo2Code(ours)
Exec. Pass. Match. Exec. Pass. Match. | Exec. Pass. Match

Cook first then cut 1.00 1.00 0.18 0.00 0.00 0.19 1.00 1.00 0.39
Cut first then cook 1.00 1.00 0.11 0.00 1.00 0.10 1.00 1.00 0.34
Cook two patties 1.00 1.00 0.84 0.00 0.00 0.41 1.00 1.00 0.40
Cut two lettuces 1.00 1.00 0.11 0.00 0.00 0.46 1.00 1.00 0.57
Assemble two burgers one by one 0.00 0.00 0.09 0.00 0.60 0.10 0.60 0.60 0.09
Assemble two burgers 1n parallel 0.00 0.00 0.06 0.00 0.00 0.08 0.00 0.00 0.07
Make a cheese burger 0.00 0.00 0.11 0.50 0.50 0.19 1.00 1.00 0.17
Make a chicken burger 0.00 0.00 0.05 0.00 0.00 0.08 0.50 0.50 0.07
Make a burger stacking lettuce atop patty immediately 0.00 0.00 0.14 1.00 1.00 0.31 0.00 0.00 0.32
Make a burger stacking patty atop lettuce immediately 0.00 0.00 0.14 0.00 0.00 0.27 1.00 1.00 0.08
Make a burger stacking lettuce atop patty after preparation 0.00 0.00 0.14 0.00 0.00 0.29 0.00 0.00 0.16
Make a burger stacking patty atop lettuce after preparation 0.00 0.00 0.13 0.00 0.00 0.15 0.50 0.50 0.25
Make a lettuce tomato burger 1.00 0.00 0.07 0.00 0.00 0.19 1.00 1.00 0.23
Make two cheese burgers 0.00 0.00 0.13 0.00 0.00 0.17 0.00 0.00 0.22
Make two chicken burgers 0.00 0.00 0.06 0.00 0.00 0.07 0.00 0.00 0.07
Make two burgers stacking lettuce atop patty immediately 0.00 0.00 0.20 0.00 0.00 0.20 0.00 0.00 0.28
Make two burgers stacking patty atop lettuce immediately 0.00 0.00 0.20 0.00 0.00 0.26 0.00 0.00 0.09

Make two burgers stacking lettuce atop patty after preparation 0.00 0.00 0.13 0.00 0.00 0.28 0.00 0.00 0.12
Make two burgers stacking patty atop lettuce after preparation 0.00 0.00 0.14 1.00 1.00 0.08 0.00 0.00 0.25
Make two lettuce tomato burgers 1.00 0.00 0.10 1.00 0.00 0.26 0.70 0.70 0.27

Overall 0.27 0.18 0.15 0.20 0.23 0.21 042 042 0.22

83

[Damen et al '18]

EPIC Kitchen Tasks

/inhan“d(‘mezzaluna_1"‘); ‘ in(‘mezzaluna_1", ‘sink_2°); soapy(’ peeler:potato_1‘)
isdirty('mezzaluna_1") inhand(peeler:potato_1");isdirty("peeler:potato_1-)

nli 1) e N S
objects = get_all_objects ()
for object 1in objects:
pick_up(object)
if check_if_dirty(object):
» | while check_if_dirty(object):
inhand(‘peeler.botato_1‘); . scrub ((@) bJ ect)
clean(peeler:potato_1) place(object, "sink_2")
turn_on("tap_1")
for object 1in objects:
pick_up(object)
rinse(object)
place (object, "dryingrack_1")
turn_off ("tap_1")

N, O/ “ Bl

isoff(‘tap_1") in("peeler:potato_1", "dryingrack_1")

89

Dishwashing Tasks across Users

P4-101 (7) P7-04 (17) P7-10(6) P22-05(28) P22-07(30) P30-07(11) P30-08 (16)

Pass Match Pass Match Pass Match Pass Match Pass Match Pass Match Pass Match
Lang2Code [30] 1 0.856 0 0.350 0 0.569 0 0.620 0 0.696 1 0.872 0 0.706
DemoNoLang2Code 1 0.233 0 0.522 0 0.695 0 0.537 0 0.233 1 0.966 0 0.671
Demo2Code 1 0.854 1 0.660 1 1.000 0 0.838 1 0.855 1 0.873 0 0.796

90

Tabletop Manipulation Tasks
o

Place the purple
cylinder to the

Task Lang2Code[30] DemoNoLang2Code Demo2Code(ours)
Exec. Pass. Match. Exec. Pass. Match.| Exec. Pass. Match
Place the blue & Place A next to B 1.00 0.28 047 0.82 020 0.33 092 090 0.90
block J 'S Place A at a corner of the table 1.00 0.18 0.05 0.82 020 0.33 092 090 0.90
ockon e & Place Aatanedgeof thetable ~ 1.00 0.18 003 094 088 087 | 1.00 098 0.96
cylinder : Place A on top of B 100 020 026 093 000 004 [1.00 073 041
S Stack all blocks 093 0.00 0.08 098 0.73 0.56 1.00 097 0.99
T Stack all cylinders 0.80 0.00 0.66 0.88 0.53 0.32 1.00 090 0.96
. oStack all blocks 1nto one stack 0.98 0.00 0.26 1.00 0.40 0.05 0.87 097 048
qé Stack all cylinders into one stack 0.93 0.13 0.01 0.97 043 0.11 0.87 093 0.42
A

Stack all objects into two stacks ~ 0.95 0.30 0.09 0.85 0.40 0.50 0.80 1.00 0.63
Overall 095 0.14 0.21 091 0.42 0.34 093 092 0.74

Stack all objects
into two stacks

Demo2Code Learns
Personalized Tasks

User 1: Prefers lettuce on patty

- o I

“al e

H R YR R

m o e s

(- I I

robot is at ‘table2’,..

"robotl’ is holding ‘pattyl’,..

Pick up pattyl

I I [I

I l (-

“patty 1’ is cooked,..

Cook pattyl

‘pattyl’ is on top of

‘bottom bunil’,..

Stack pattyl

‘robotl’ is holding ‘lettucel’,..

Pick up lettucel

‘lettucel’ is on top of

‘patty1l’,..

Stack lettucel

"top_bunl’ is on top of
‘lettucel’, ..

Stack top bunl

User 2: Prefers cheese on pattyi

QHE '-E

- -~ i

robot is at ‘tableil’,..

(S
-

‘robotl’ is holding ‘pattyl’,..

Pick up pattyl

—
4
L}

£

-

-

‘pattyl’ is cooked

Cook pattyl

'pattyl' is on top of
‘bottom buni, ..

Stack pattyl

‘robotl1’ is holding ‘cheesel’

Pick up cheesel

‘cheesel’ is on top of
‘patty1l’,..

Stack cheesel

S
=

=l
o N
R T
|

‘top_bunl’ is on top of

‘cheesel’, ..

Stack top bunl

User 1: Prefers lettuce on patty

M TRTRTTR R R A R A R A WA A WA

hdied T e e eded [e [e [i [O E 9
¥ - - - - (Y] 1]

robot is at ‘table2’,.. "robot1l’ is holding ‘pattyi’,.. “patty 1’ is cooked,.. ‘pattyl’ is on top of ‘yrobot1l’ is holding ‘lettucei’,.. lettucel’ is on top of "top_bunl’ is on top of
‘bottom buni’,.. “pattyl’,.. ‘lettucel’, ..
‘ Pick up pattyl Cook pattyl Stack pattyl Pick up lettucel Stack lettucel Stack top bunl
Make a burger. def main():

Decide a patty to cook. .
Cook that patty at that stove. patty = patties[0]

cook obj at loc(patty, stoves[0])

—» Decide a lettuce to cut. —>

Cut that lettuce on that lettuce = lettuces[0]
cutting board. cut_obj at loc(lettuce, boards[0])
Stack that lettuce on that stack _objl on obj2(lettuce, patty)
patty. .o

T stack objl on obj2(top bun, lettuce) .
Stack that top bun on that lettuce.

Make a burger.

Decide a patty to cook.
Cook that patty at that stove.

—» Decide a lettuce to cut.

Cut that lettuce on that
cutting board.

Stack that lettuce on that
patty.

Stack that top bun on that lettuce.

——

def main():

patty patties[0]

cook obj at loc(patty, stoves[0])

lettuce lettuces[0]
cut_obj at loc(lettuce, boards[O0])
stack _objl on obj2(lettuce, patty)

stack objl on obj2(top bun,

lettuce)

User 2: Prefers cheese on pattyi

—=
ol M

=1
o

(@]
L] -~ i

def main():

patty patties[0]
cook obj at loc(patty,

stoves[0])
4—

cheese cheeses[0]

stack_objl on obj2(cheese, patty)

stack objl on obj2(top bun, cheese)

S I M ©

L2
2s g

2
L

_
-

robot is at ‘tableil’,.. ‘robot1l’

Pick up pattyl

is holding ‘pattyl’,..

- KR

()
el

— il

‘pattyl’ is cooked 'pattyl’

Cook pattyl

is on top of
‘bottom_buni,

Stack pattyl

Y mEa e
(@)

Make a burger.

Decide a patty to cook.
Cook that patty at that stove.

Decide a cheese to use.
Stack that cheese on that
patty.

Stack that top bun on that cheese.

—

‘robotl1’ is holding ‘cheesel’

. ‘patty1’,..

Stack cheesel

Pick up cheesel

cheesel’ is on top of

(S
=

‘top_bunil’
‘cheesel’, ..

is on top of

Stack top bunl

inhand(" bowl_i‘); isdirty(“bowl 1%); ...

scrub(‘bowl 1")

inhand("glass_1%); isdirty(glass _1%); ...

scrub(‘glass 1)

ison(“tap 1");inhand("bowl 1%);
soapy(bowl 1%); ...

rinse(‘bowl 1")

inhand(“bowl 1%); clean("bowl 1%); ...

place(‘bowl 1)

inhand("glass 17); soapy(“glass 1%); ...

rinse(‘glass 1')

inhand("glass _1");clean("glass 1%); ...

place(‘glass 1') ...

User 30: Prefers to scrub and rinse each object

inhand("mug_1"); isdirty("mug_1°); ...

scrub(‘mug 1')

ison(“tap_1%); inhand("mug_1°);
soapy("mug_1%); ...

rinse(‘'mug 1')

clean(*mug_1°); at("countertop 1%); ...

place(‘'mug 1)

at(" countertop 1");on("jug 1°,
countertop 1%); ...

pickup(‘jug_1"

ison(“tap_1"); inhand(“jug 1%);
isnotdirty("jug_17); ...

rinse(‘jug 1')

clean("jug 1%);at("countertop 1%); ...

place(‘jug 1')

96

inhand(" bowl_i‘); isdirty(“bowl 1%); ...

inhand("glass_1%); isdirty(glass _1%); ...

ison(“tap 1");inhand("bowl 1%);
soapy(bowl 1%); ...

scrub(‘bowl 1') scrub(‘glass 1) rinse(‘bowl 1")

inhand(“bowl 1%); clean("bowl 1%); ... inhand("glass_1); soapy(“glass 1); ...

inhand("glass _1");clean("glass 1%); ...

place(‘bowl 1") rinse('glass 1') place(‘glass 1) ...

Wash objects at the sink. objs = get_all objs()
pick_up('"scrub_1")

for obj in objs:

Get a list of all objects to wash
Pick up scrub 1

For each object in all objects:
Scrub object

Place object in sink 2

scrub(obj)
place(obj, "sink 2")

turn _on("tap 1")

Turn on tap_1
For each object in all objects:

Rinse object

Place object in dishrack 1
Turn off tap 1

for obj in objs:

rinse(obj)

place(obj, "dishrack 1")
turn off("tap 1")

objs = get_all objs()
for obj in objs:

bring objs to loc([obj],

Wash objects at the sink.

Get a list of all objects to wash

"Silik_jf') For each object in all objects:
Bri bject to sink 1
if check if dirty(obj): rnw.oje? Os}n" , ,
- = — Scrub object 1f object 1is
scrub(obj)

. R . dirty
while check if dirty(object):

rinse(obj)
turn off("tap_1")
place(obj,

Rinse object till clean
Turn off tap 1
Place object on counter_ 1

"counter 1")

1

User 30: Prefers to scrub and rinse each object

inhand("mug_1"); isdirty("mug_1°); ... ison(“tap_1°); inhand("mug_1°);

soapy("mug 1%); ...

clean(*mug_1°); at("countertop 1%); ...

scrub(‘mug 1) rinse(‘'mug 1') place('mug 1')

at(" countertop 1");on("jug 1°,
countertop 1%); ...

ison(“tap_1"); inhand(“jug 1%);
isnotdirty("jug_17); ...

pickup(‘jug 1) rinse(‘jug 1) place(‘jug 1')

clean("jug 1%);at("countertop 1%); ...

97

.

Many open research questions!

o .
-
.
v
- -
- .
. .
- .
. . - -
» - -
- - 4 <
- .
- - - -
- -
A -
-
-
- —
’ -
- -
~ ’
-
-
. - .
. S -
» - >,
- -
.
3 .
'
. -
. .
- 5
™ -~
. ~ .
-
~
N
¢ -
'
-
- »
.
0
o -
‘.
S .

What is the right level of abstraction for LLMs to generate?

(Growing support for LLMs generating reward functions)

Huang et al. VoxPoser

Can language help for non-language tasks?

(Growing evidence that language captures useful invariances)

Mirchandani et al.
Large Language Models as
General Pattern Machines

Can LLMs solve planning problems?

Valmeekam et al.

(Growing evidence that says No) ‘o tersuage Models Stil

99

