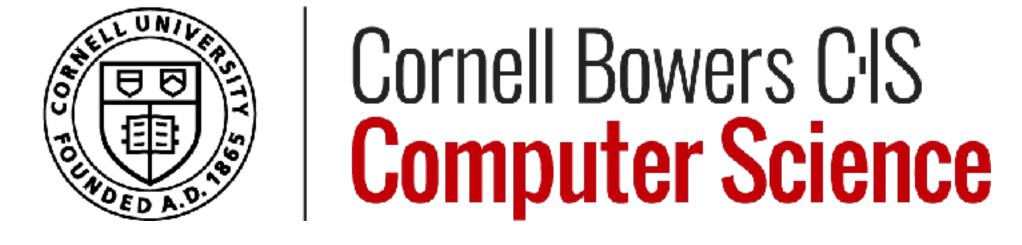
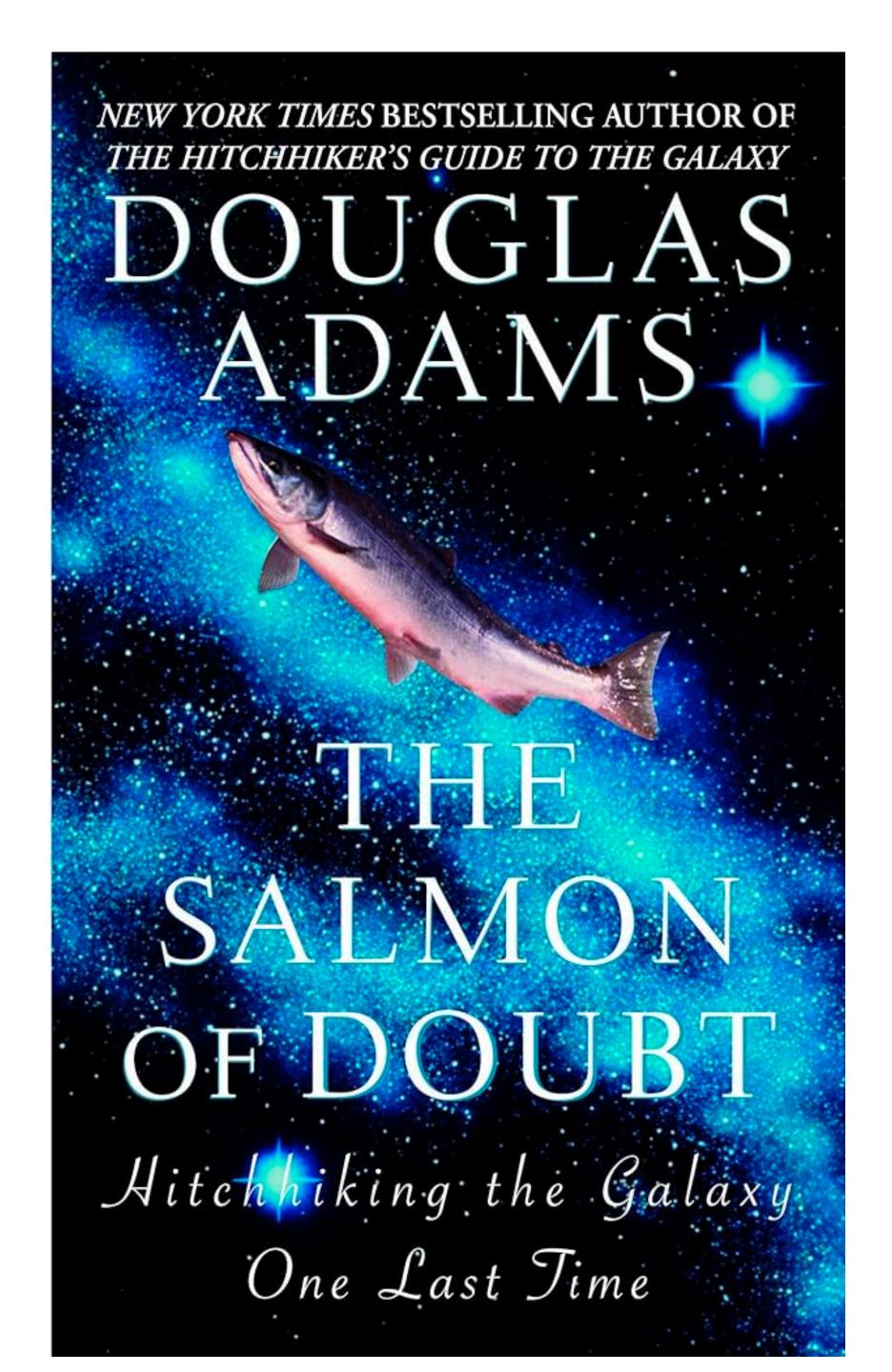
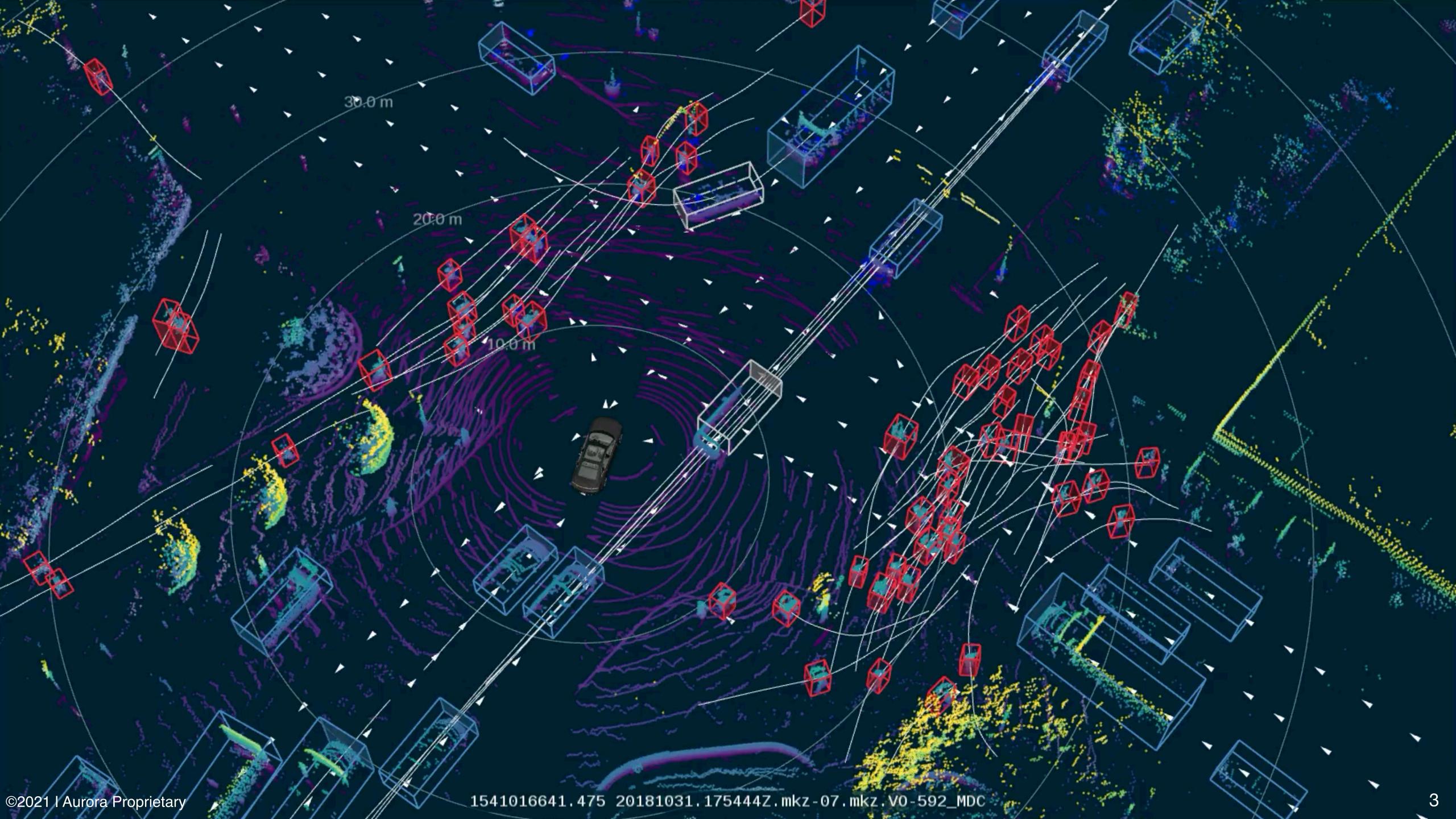
Multi-Agent Forecasting and Imitation Learning

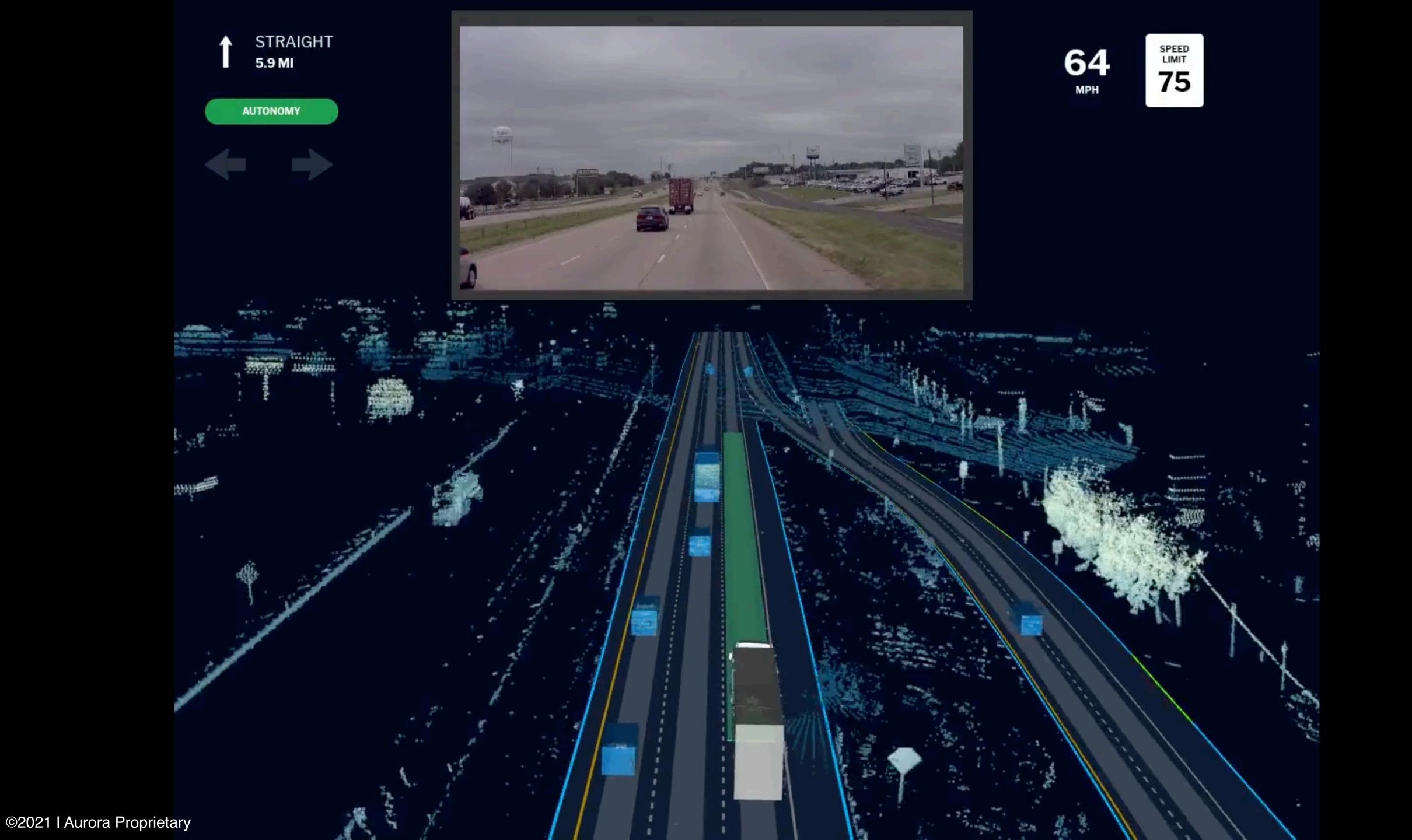
Sanjiban Choudhury



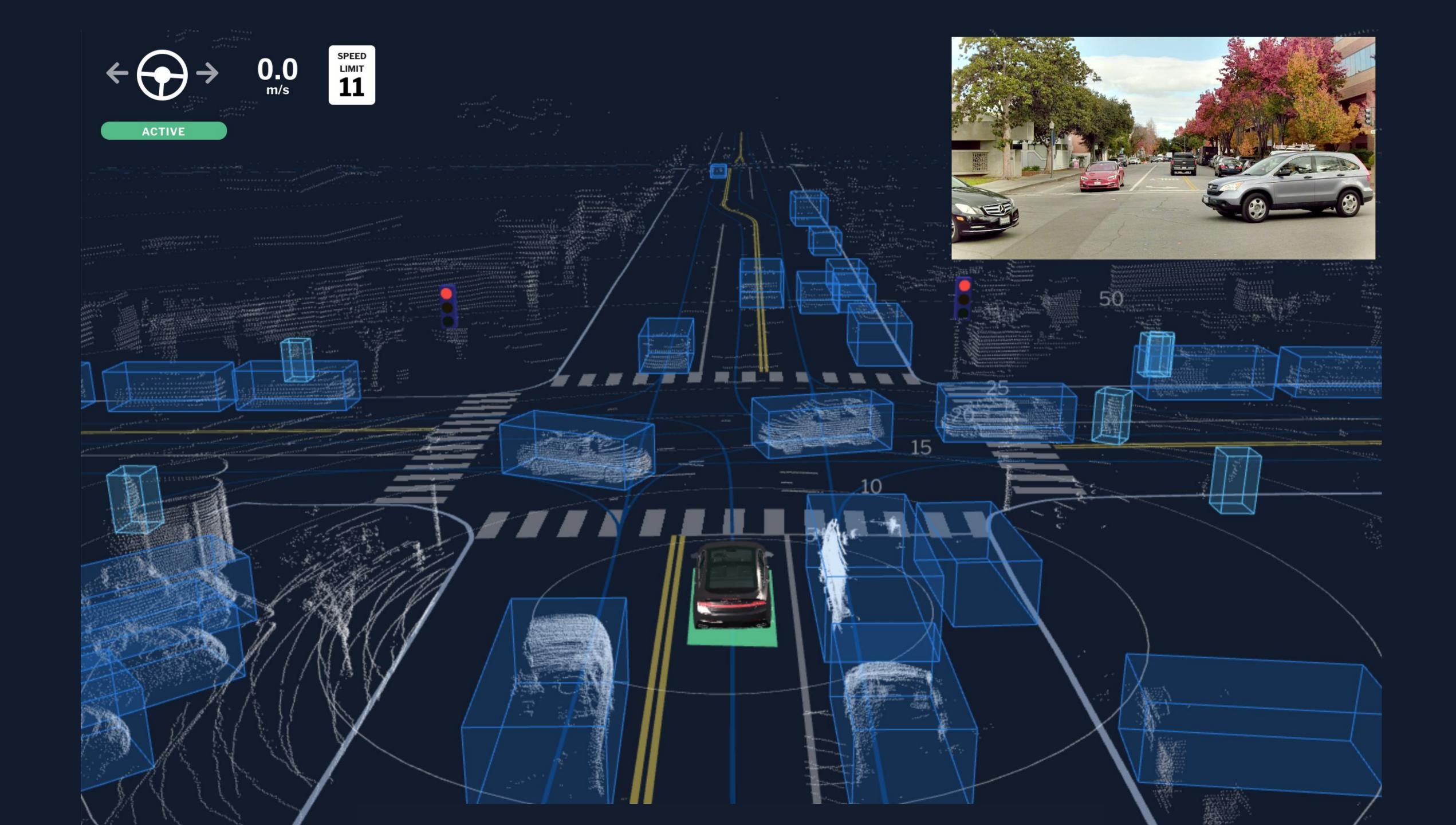
"Trying to predict the future is a mug's game..."



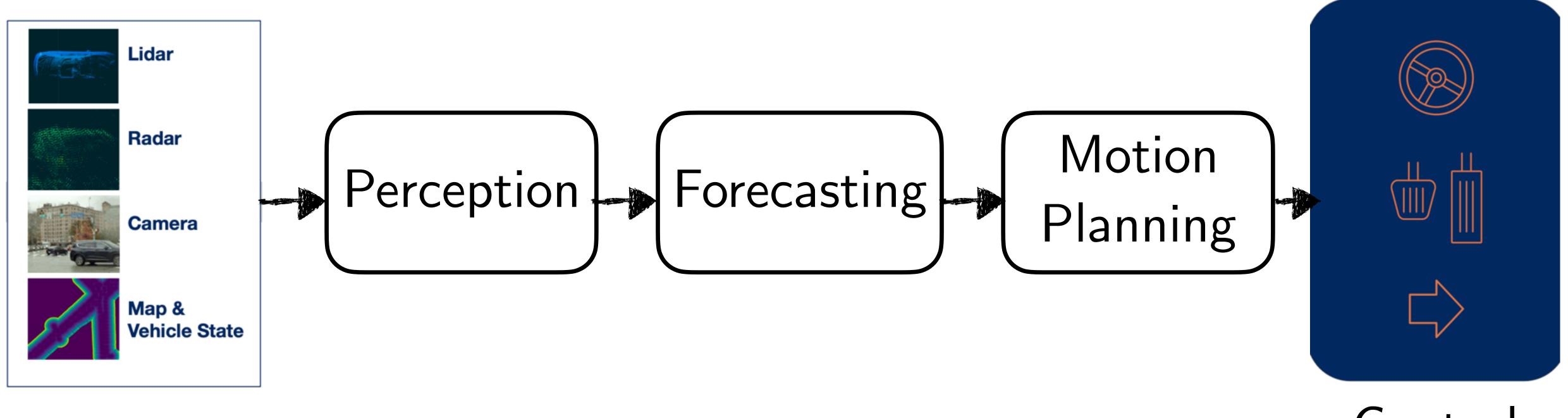




How the robot sees the world ...



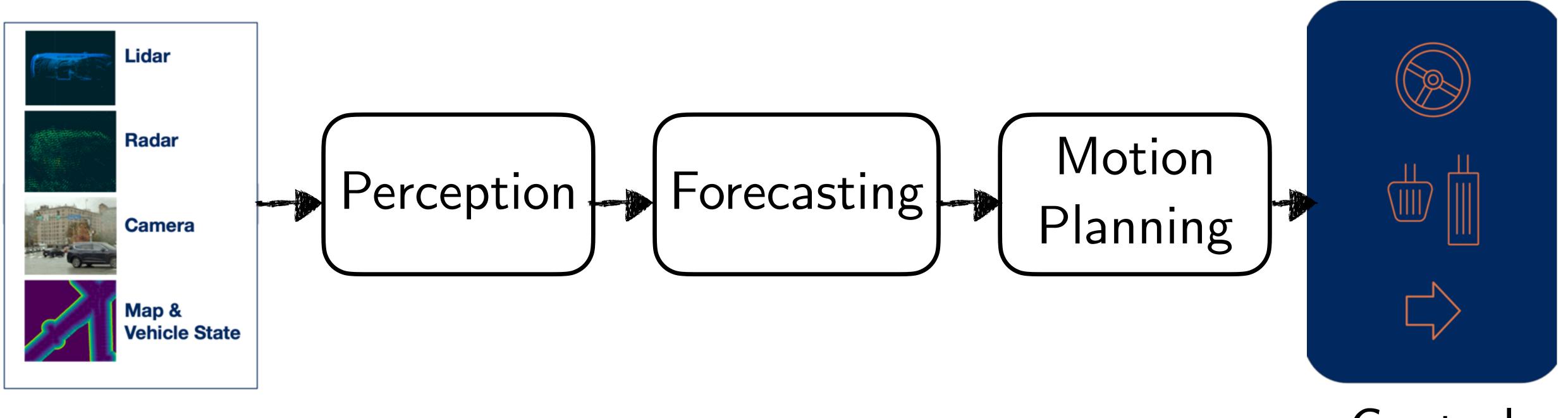
Traditional Architecture



Raw sensor data

Control actions

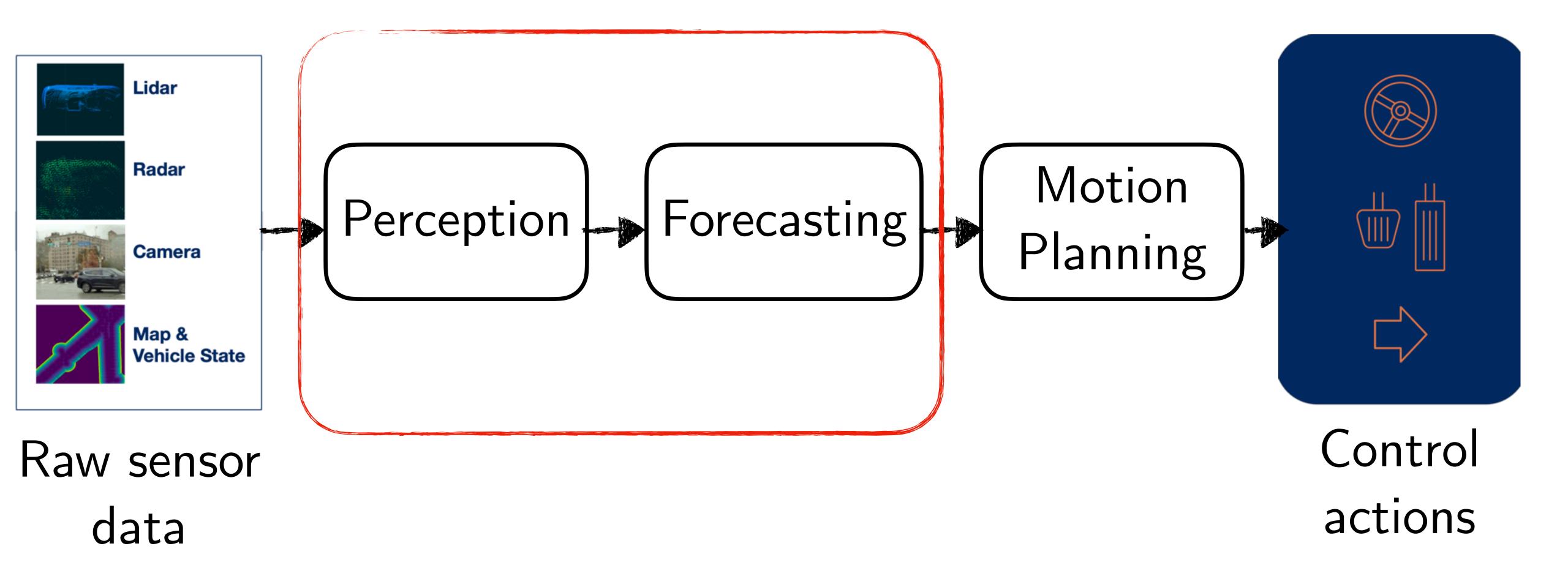
Is having cascaded blocks a good idea?



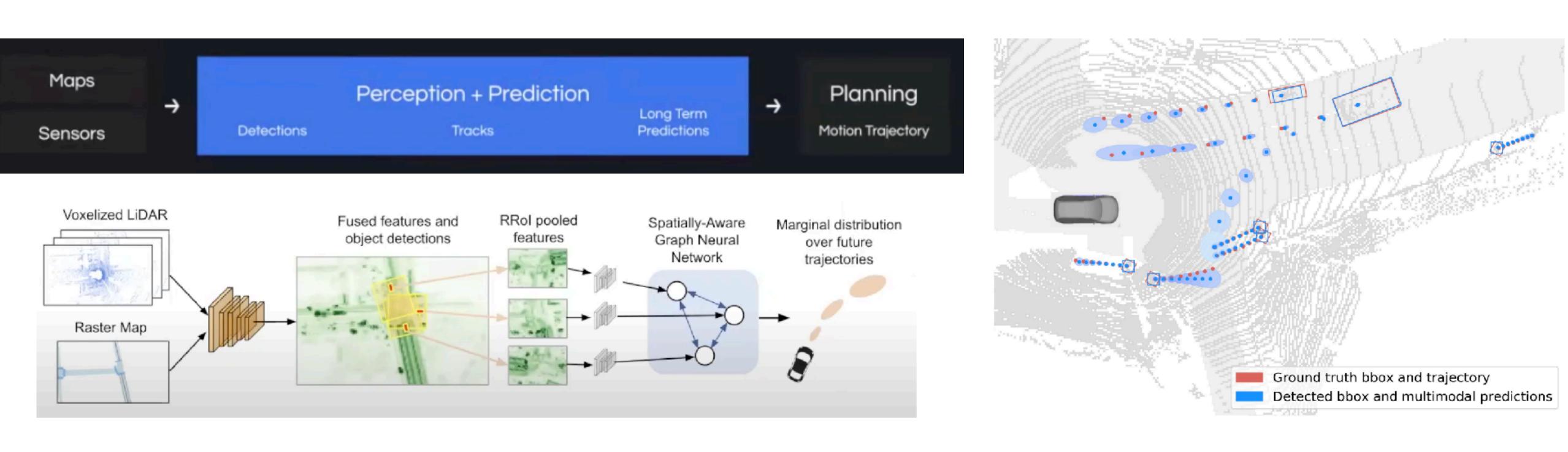
Raw sensor data

Control actions

Lots of work on perception+forecasting



Lots of work on perception+forecasting



SPAGNN: Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data

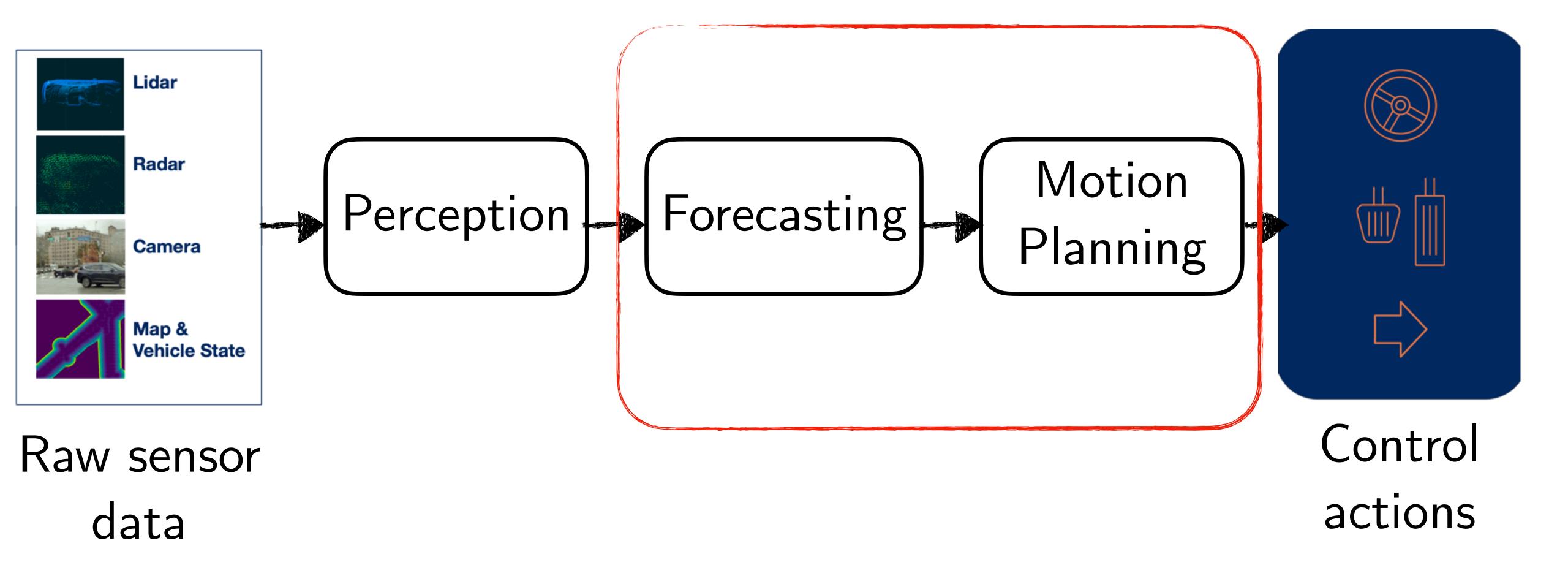
Sergio Casas^{1,2}, Cole Gulino¹, Renjie Liao^{1,2}, Raquel Urtasun^{1,2}
Uber Advanced Technologies Group¹, University of Toronto²
{sergio.casas, cgulino, rjliao, urtasun}@uber.com

MultiXNet: Multiclass Multistage Multimodal Motion Prediction

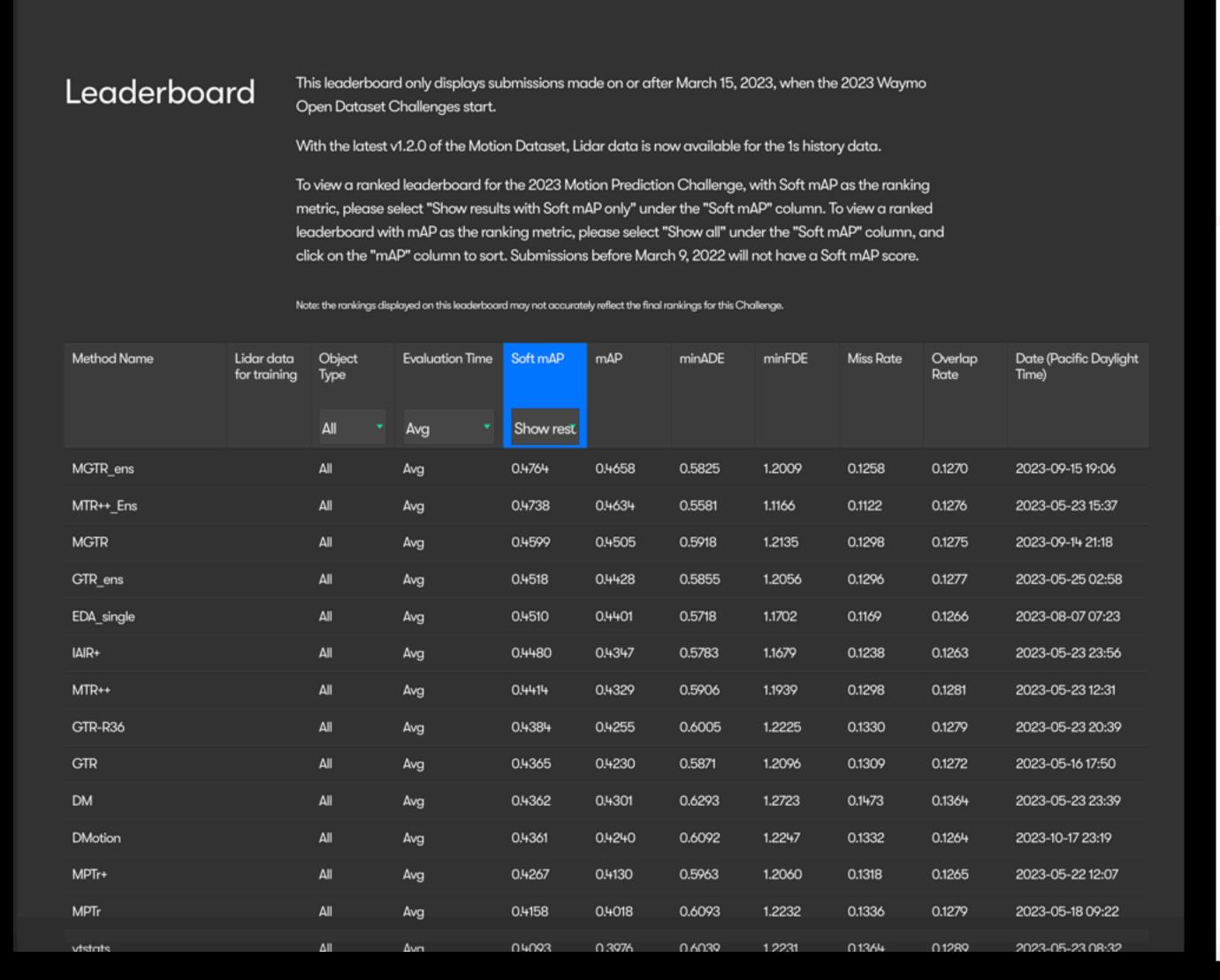
Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan Wu, Huahua Wang, Fang-Chieh Chou, Luisa San Martin, Song Feng, Rui Hu, Yang Xu, Alyssa Dayan, Sidney Zhang, Brian C. Becker, Gregory P. Meyer, Carlos Vallespi-Gonzalez, Carl K. Wellington Uber Advanced Technologies Group

{ndjuric, hcui2, suzhaoen, shangxuan.wu, anteaglewang, fchou, luisasm}@uber.com {songf, rui.hu, yang.xu, ada, sidney, bbecker, gmeyer, cvallespi, cwellington}@uber.com

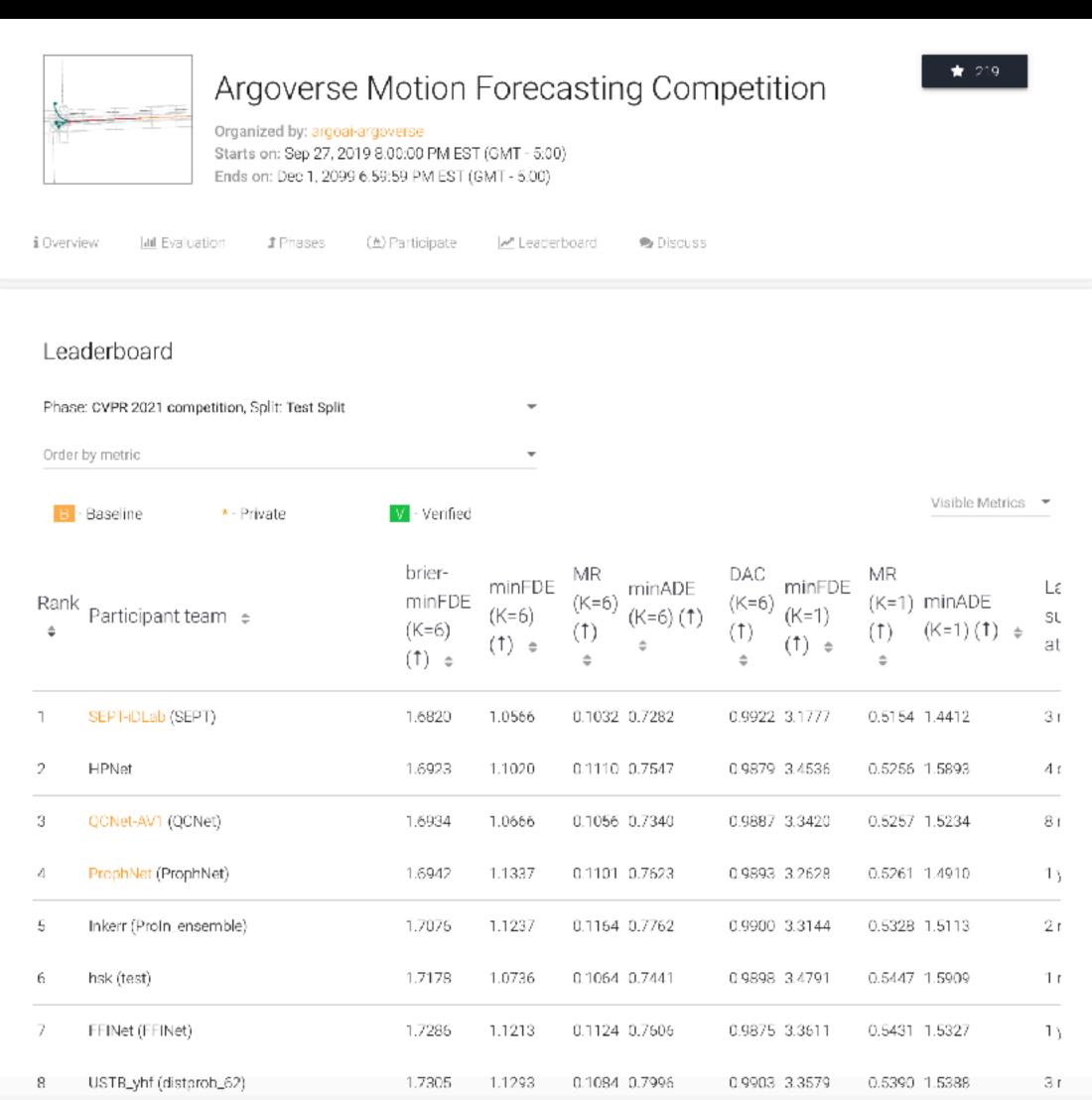
What about forecasting+planning?



Forecasting is a very active area of research!



types.



Forecasting is built on shaky foundations

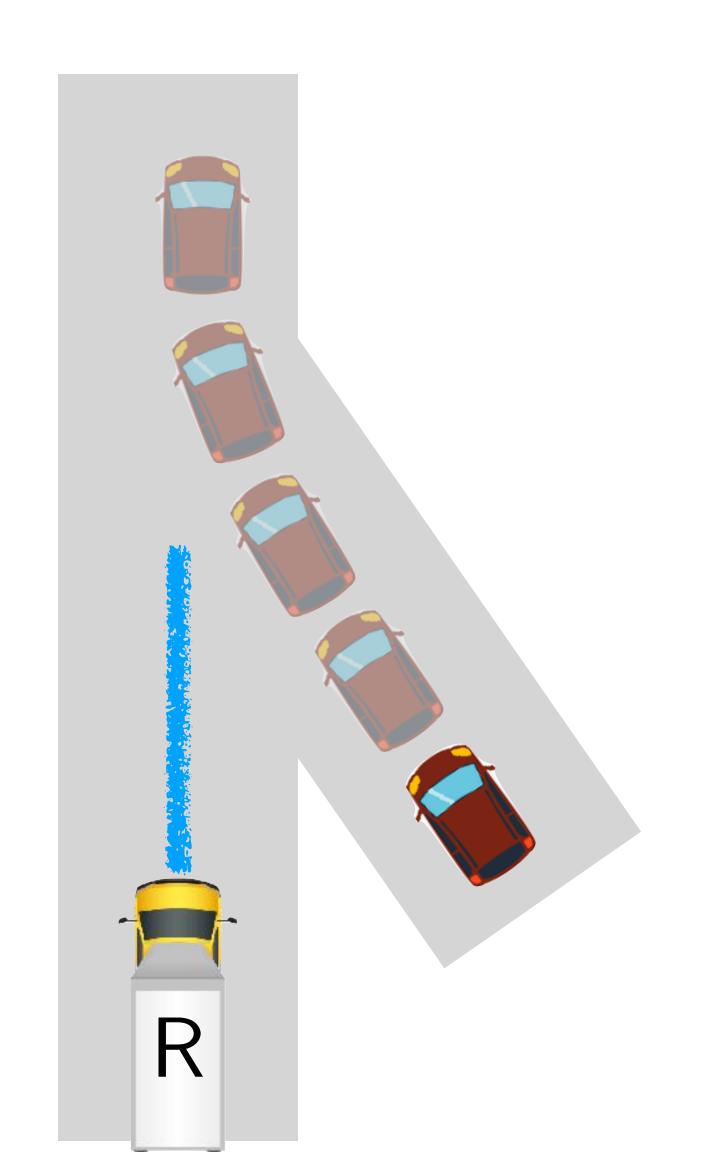
Shaky foundations of forecasting

Are we using the right model?

Are we collecting data correctly?

Are we using the right loss?

Example: Learning forecasts for merging actors

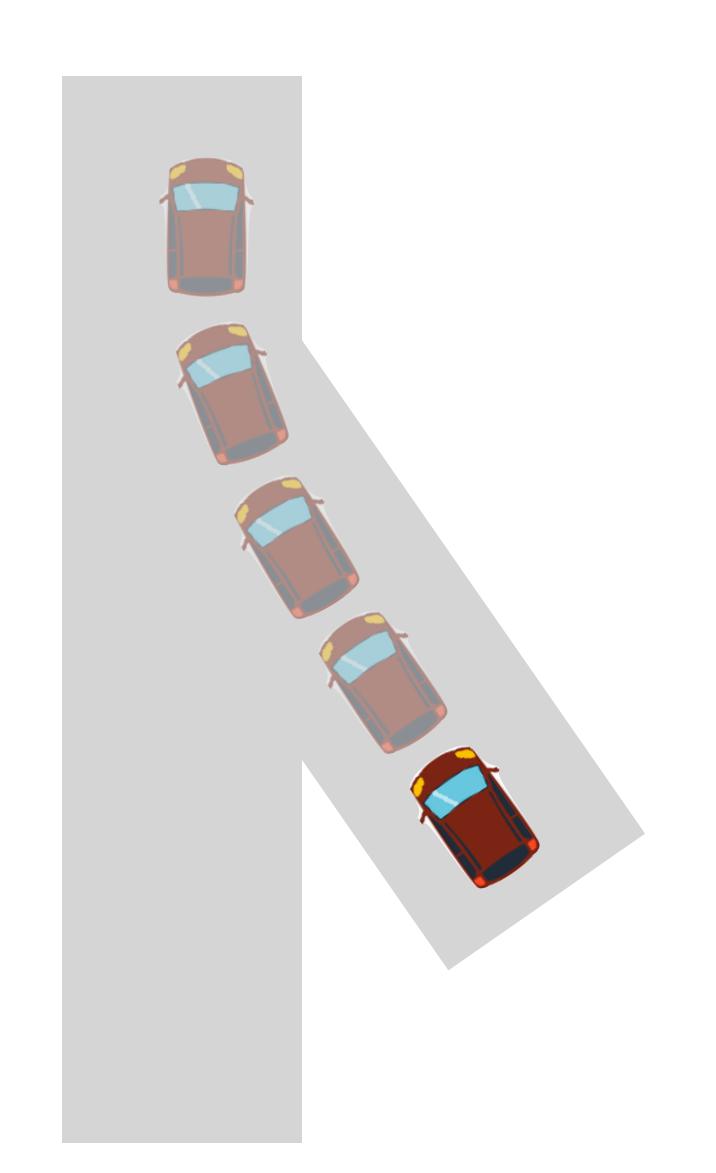


Goal

- 1. Predict 5s future trajectory
- 2. Plan with 5s future trajectory

Activity!

Example: Learning forecasts for merging actors



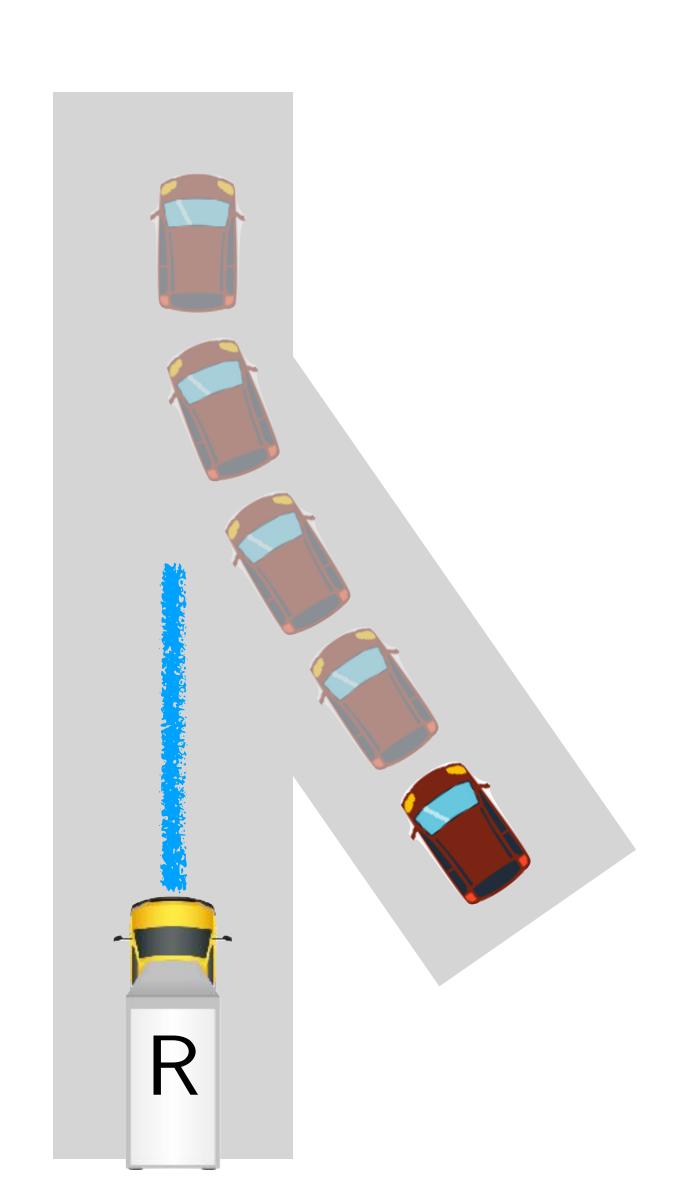
1. Predict 5s future trajectory

Data?

Model?

Loss?

Example: Learning forecasts for merging actors



2. Plan with 5s future trajectory

Cost function?

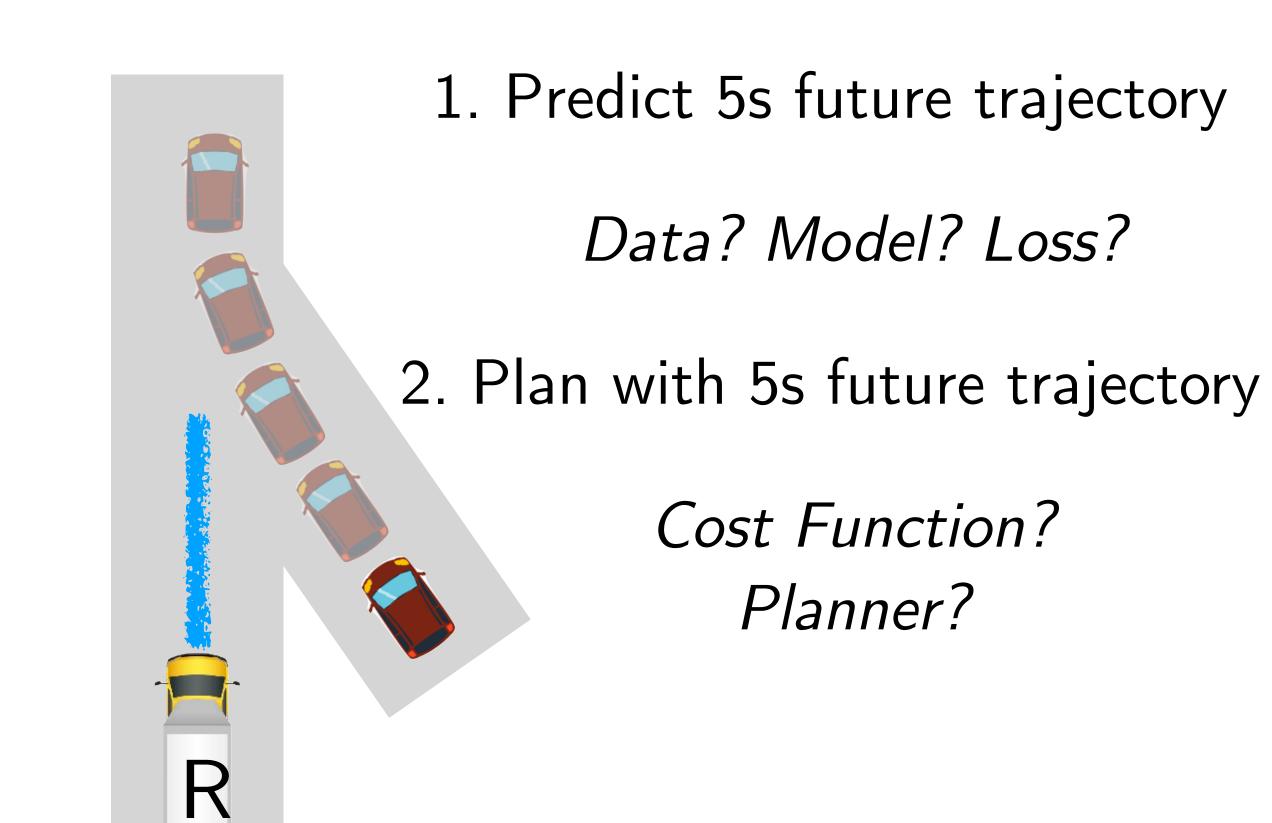
Planner?

Think-Pair-Share!

Think (30 sec): Design choices for forecasting and motion planning

Pair: Find a partner

Share (45 sec): Partners exchange ideas



Why is current state insufficient to predict future?

Simple latent variables:

Velocity, Acceleration may not be observable

Complex latent variables:

Intent (turning left, making a lane change) are not observable and must be inferred from past actions

A very brief history of sequence prediction in robotics

Kalman Filter + Prediction

Hand design observation models, infer latent states, forward predict.

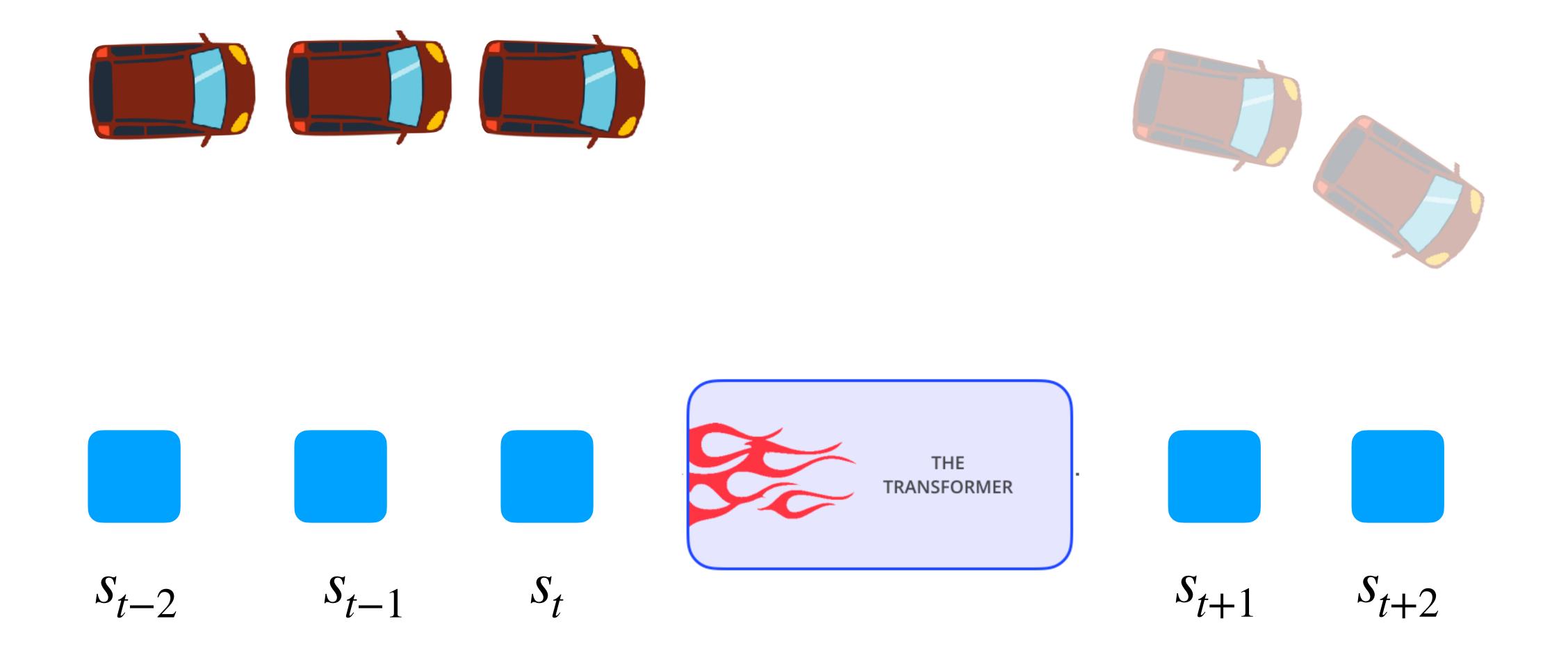
RNN, LSTMs

Learn the filter! Problem - forget long sequences since only one hidden state vector passed from one time step to next

Transformers

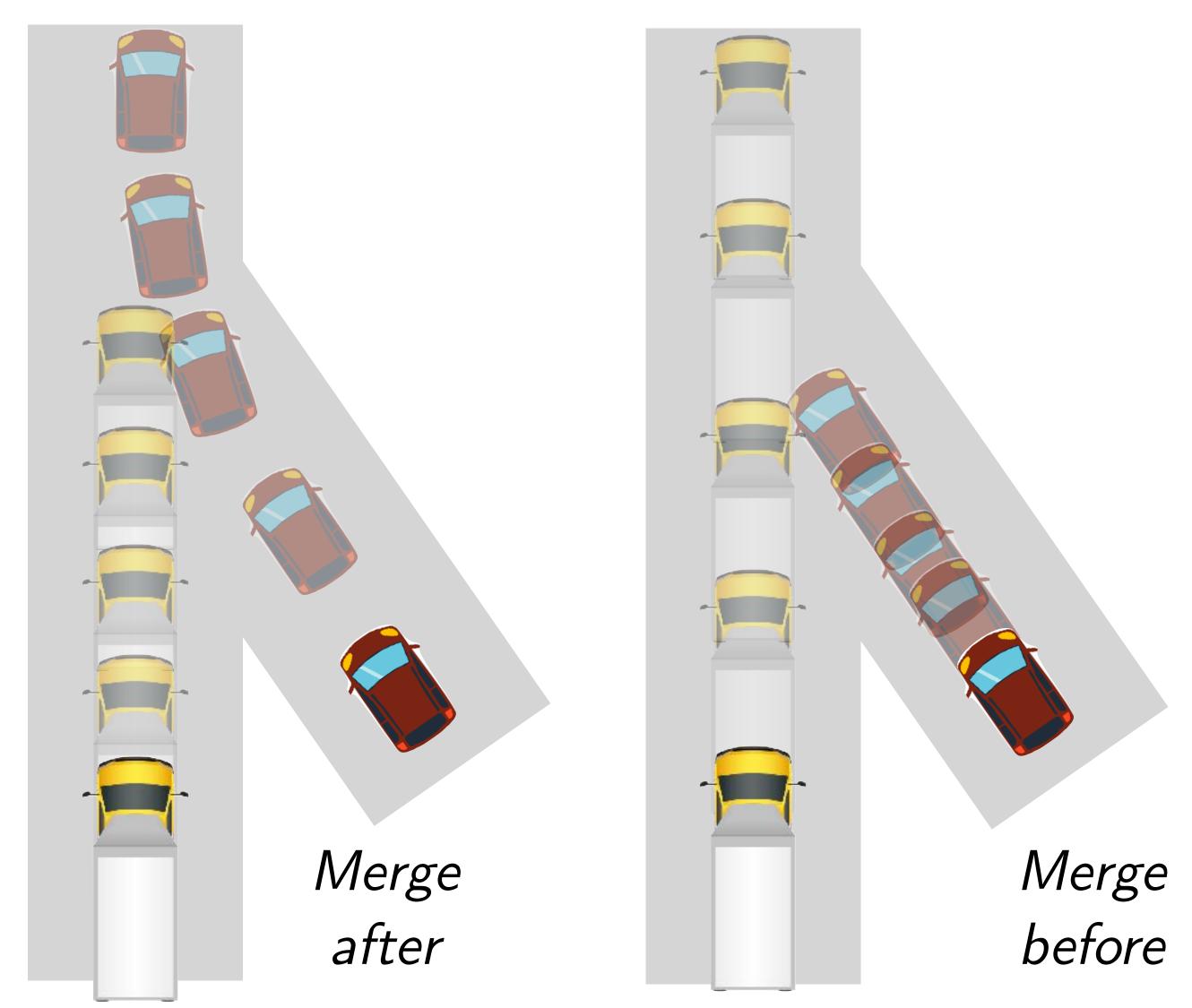
Retain all hidden state, pay $O(H^2)$ computation

Model: Use a transformer to map history to future

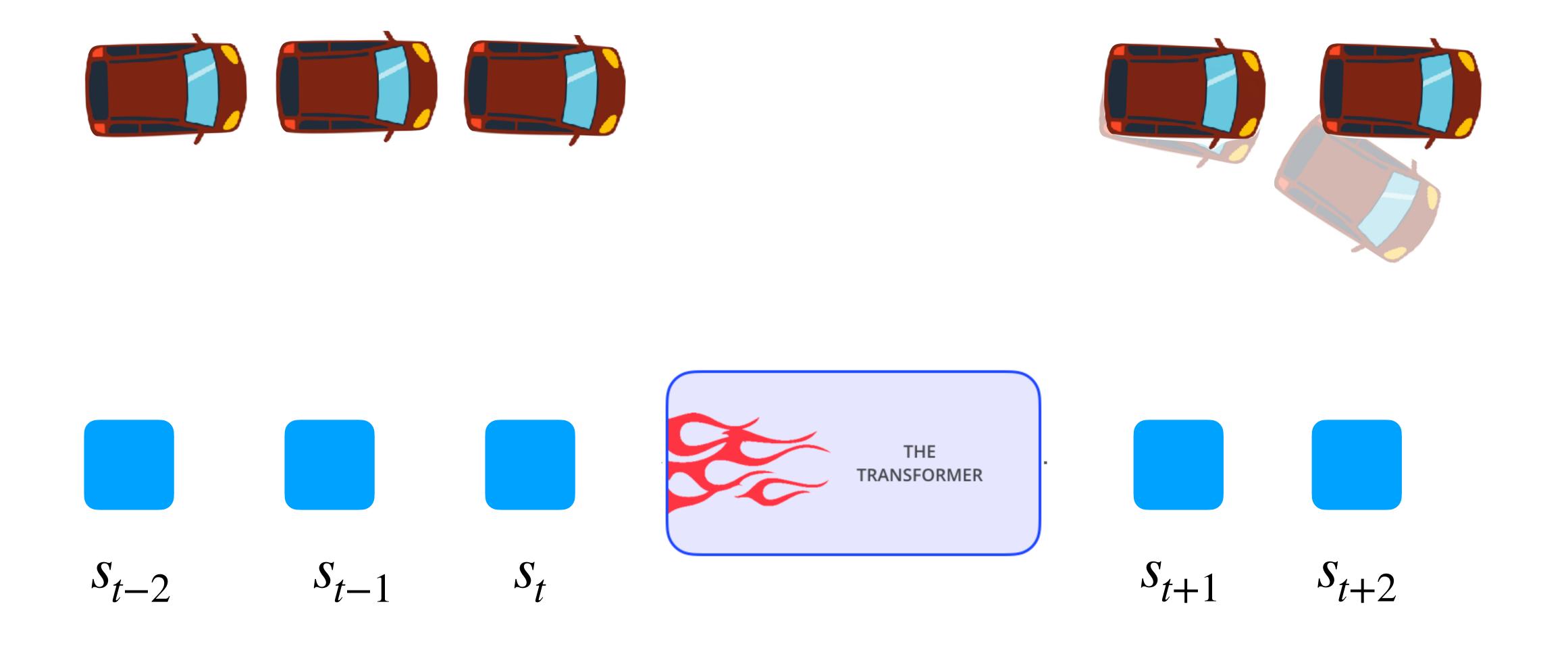


Data: Drive around the car and collect data

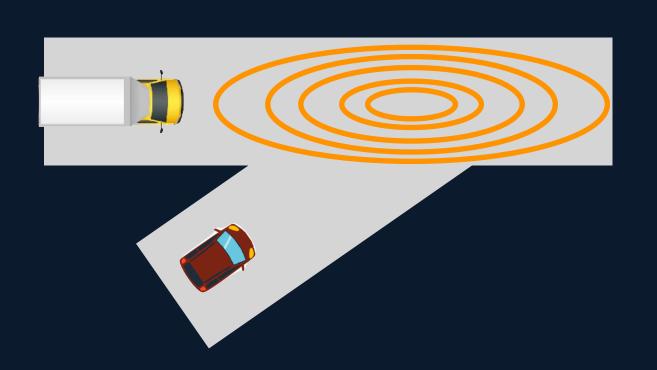
Train Data



Loss: L2 Loss from Ground Truth



We have model, data, loss. Let's deploy!



Forecasts have huge variance!

Planner brakes aggressively!

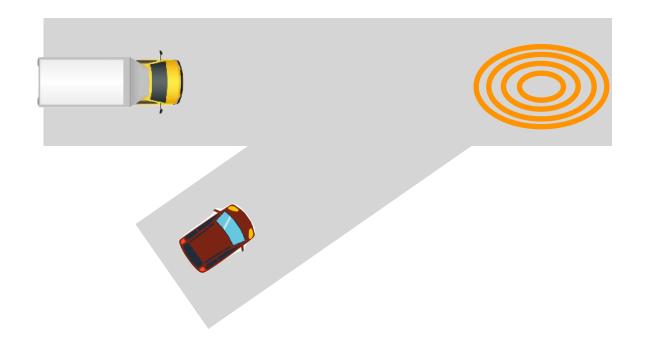
©2021 | Aurora Proprietary

Why is the forecast so whacky?

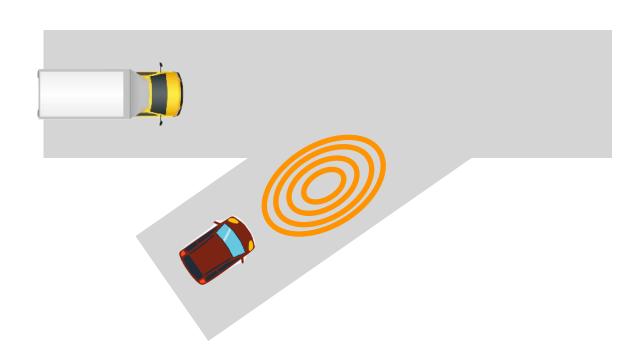
Why is the forecast so whacky?

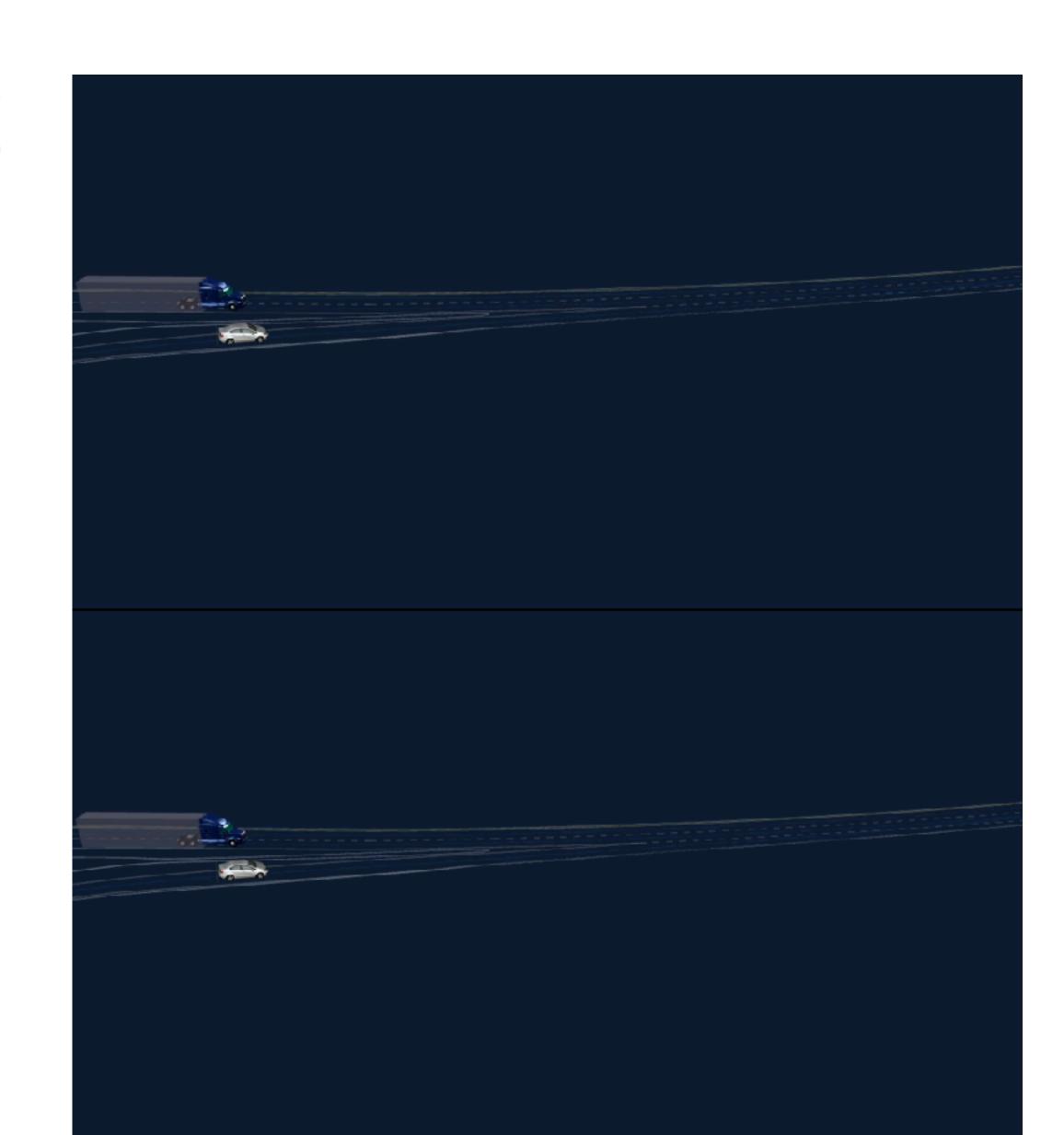
Marginalizing over multiple modes!

Mode A: Robot merges after



Mode B:
Robot merges
before



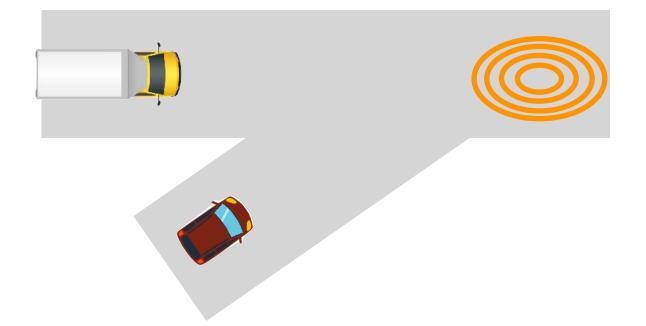


Okay .. so why can't we just predict multi-modal distributions?

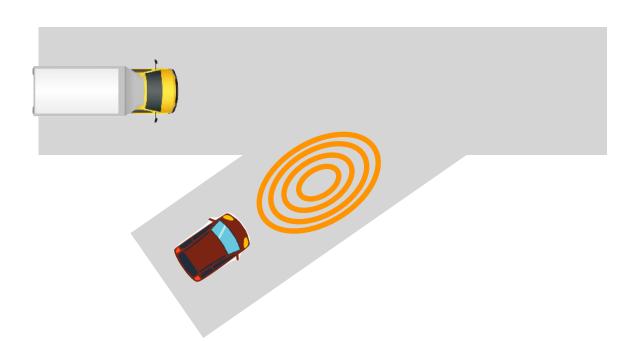
Multi-modal forecasts do not solve the issue!

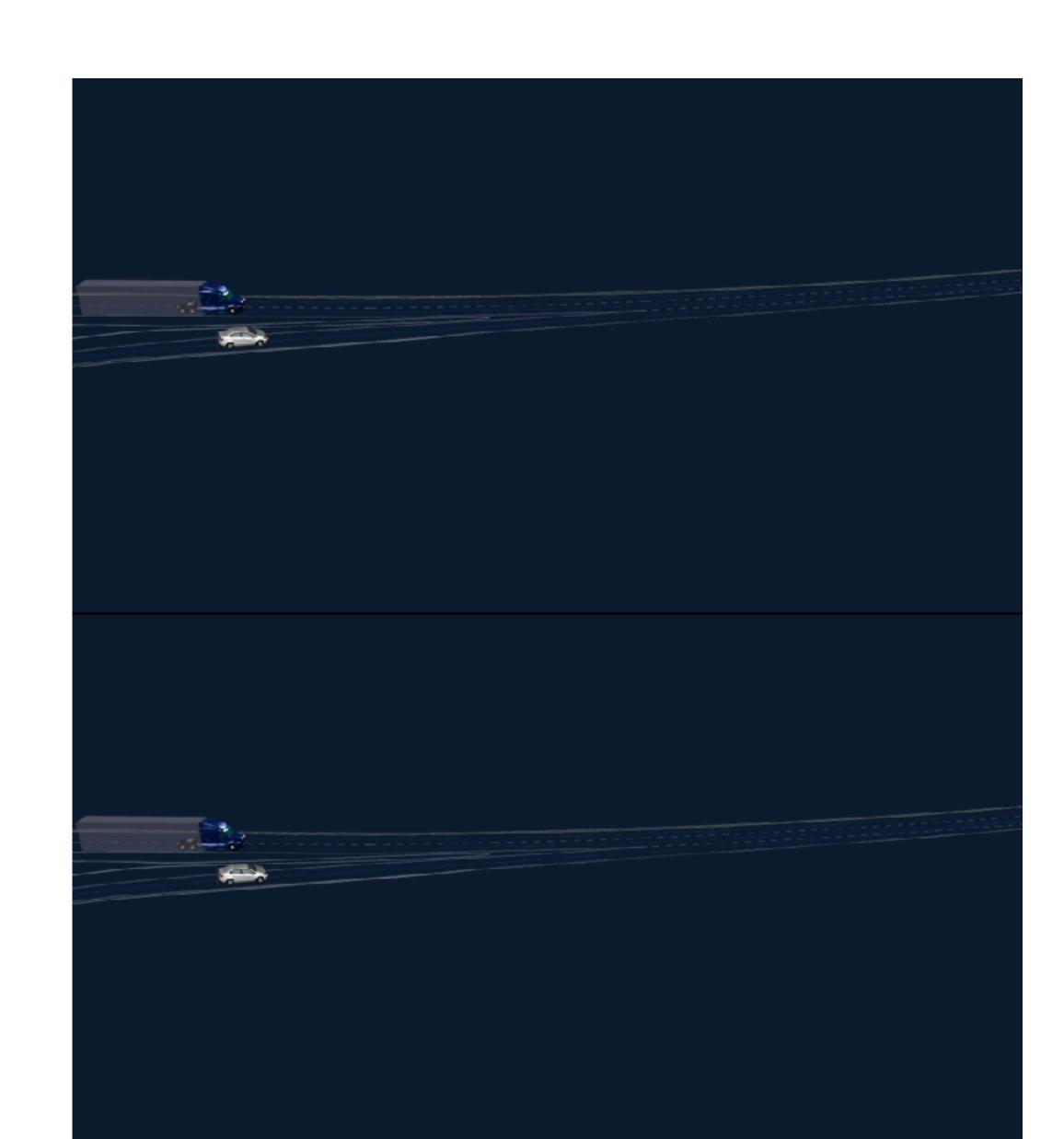
We are (incorrectly) telling the planner both modes can happen!

Mode A: Robot merges after



Mode B:
Robot merges
before





What robot does depends on other humans

What other humans do depends on the robot

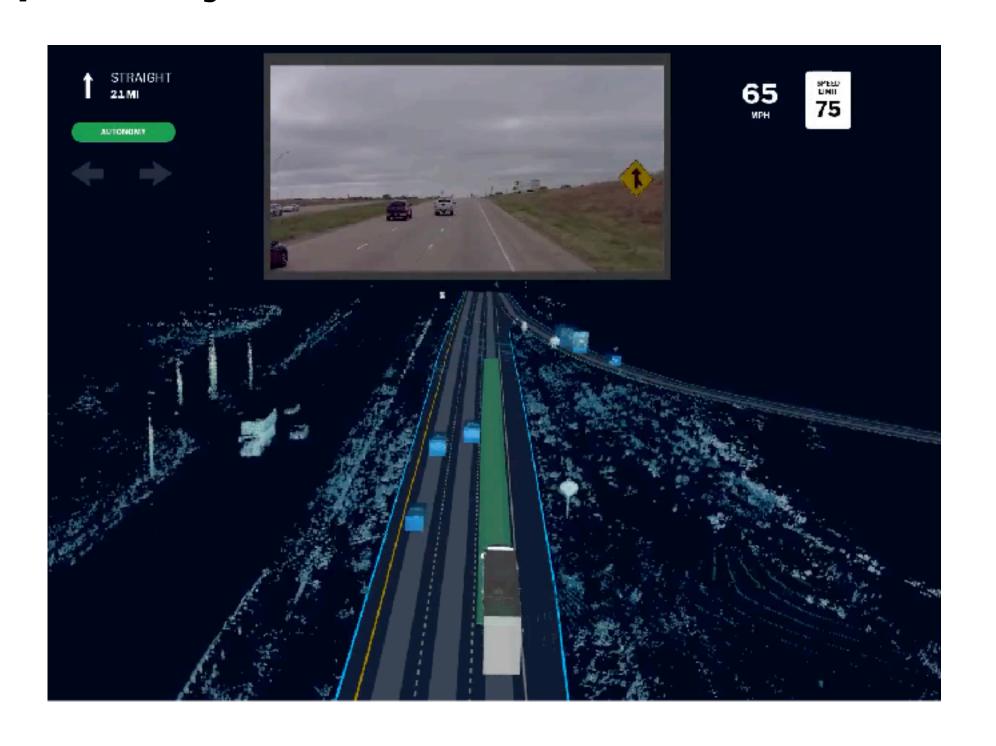
Forecasting-or-planning: a chicken-or-egg problem



Why can't we just forecast the robot motion?

Planning is NOT merely forecasting

Suppose you collected data from this



vs data from this

Which data is useful for forecasting? For imitation learning?

Solving the chicken-or-egg problem

Train a conditional forecasting model

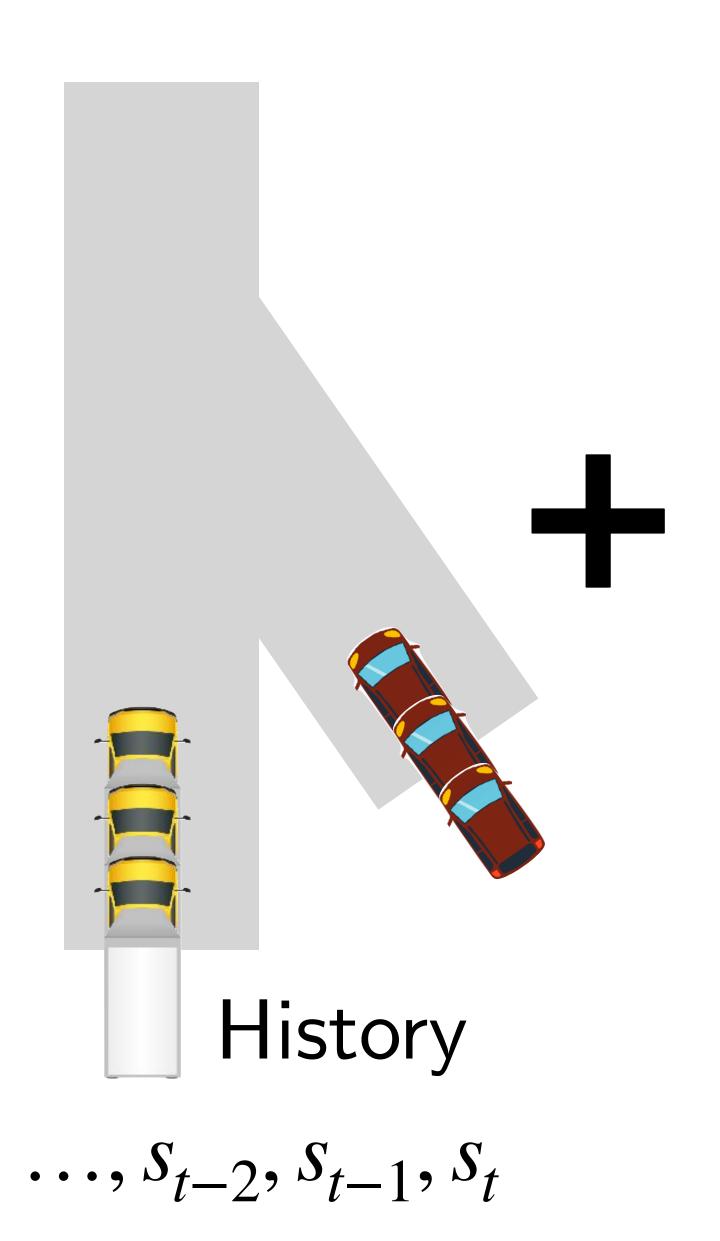
Marginal forecasting

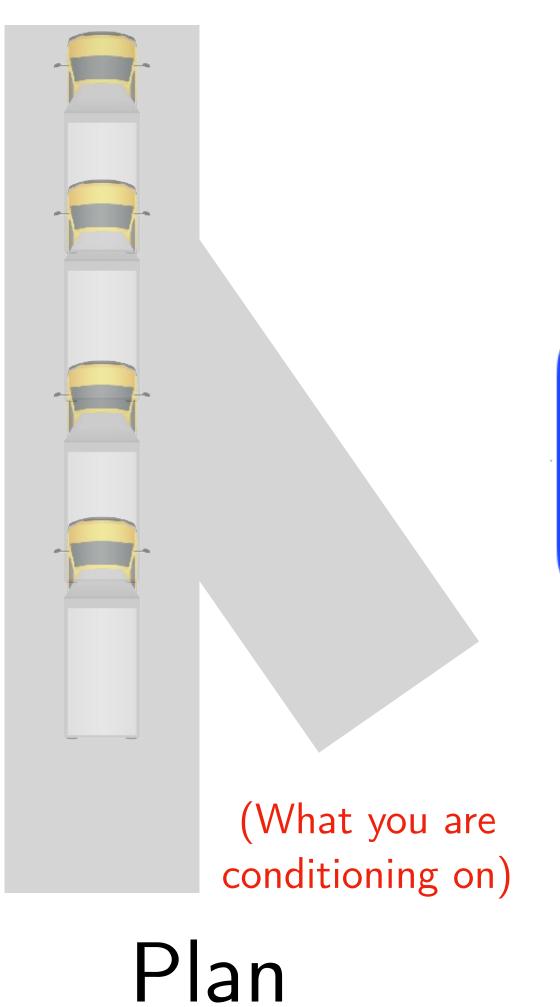
Conditional forecasting

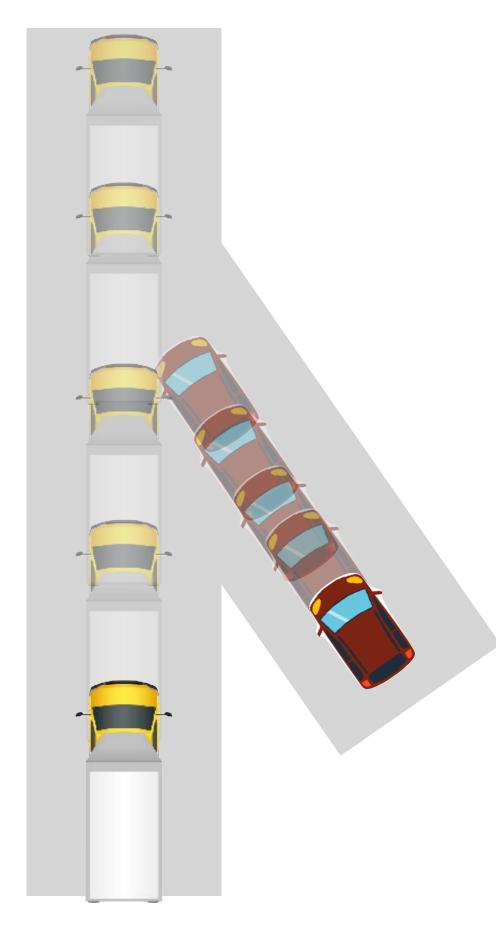
$$P(s_{t:t+k} | s_{t:t-k})$$

$$P(s_{t:t+k} | s_{t:t-k}, \xi_{plan})$$

Solution: Train Conditional Forecasts







Forecast

$$a_{t_1}, a_{t+2}, a_{t+3}$$

 $S_{t+1}, S_{t+2}, S_{t+3}, S_{t+4}$

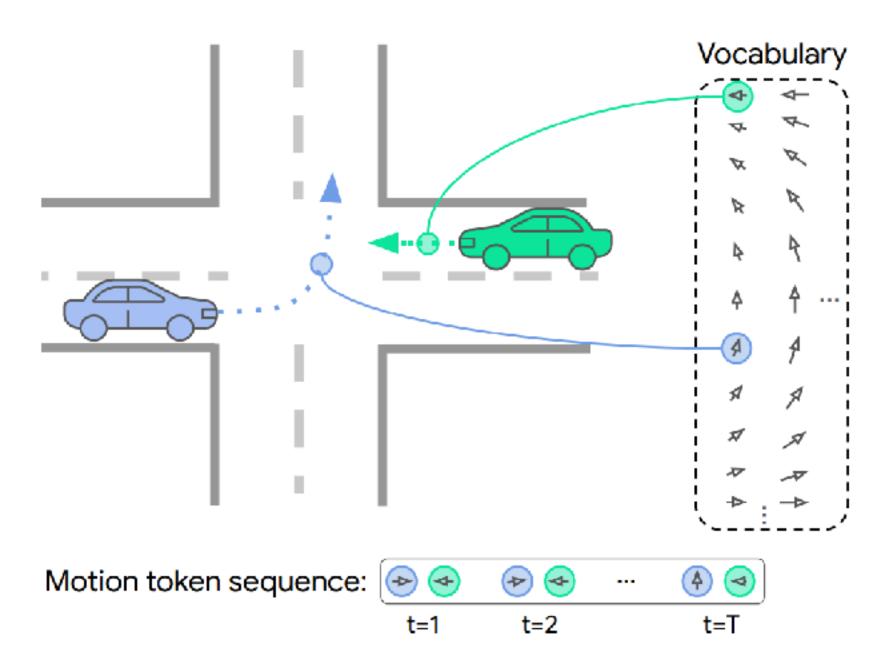
How do we do this?

Language Models for Forecasting

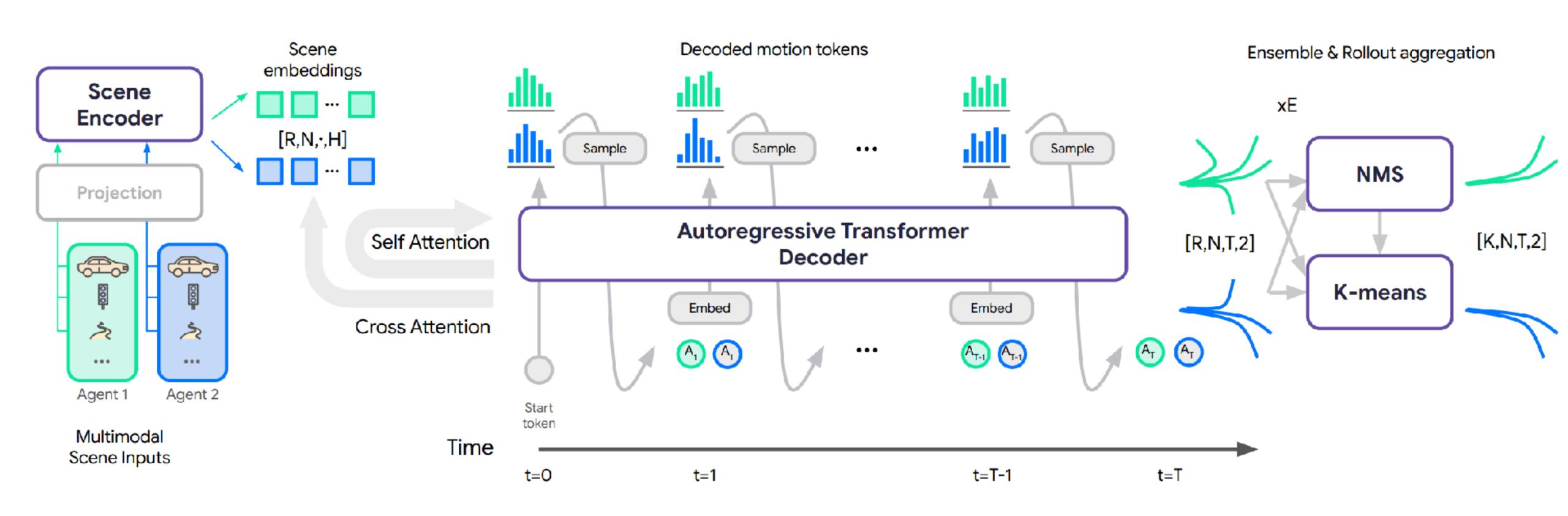
MotionLM: Multi-Agent Motion Forecasting as Language Modeling

Ari Seff Brian Cera Dian Chen* Mason Ng Aurick Zhou Nigamaa Nayakanti Khaled S. Refaat Rami Al-Rfou Benjamin Sapp

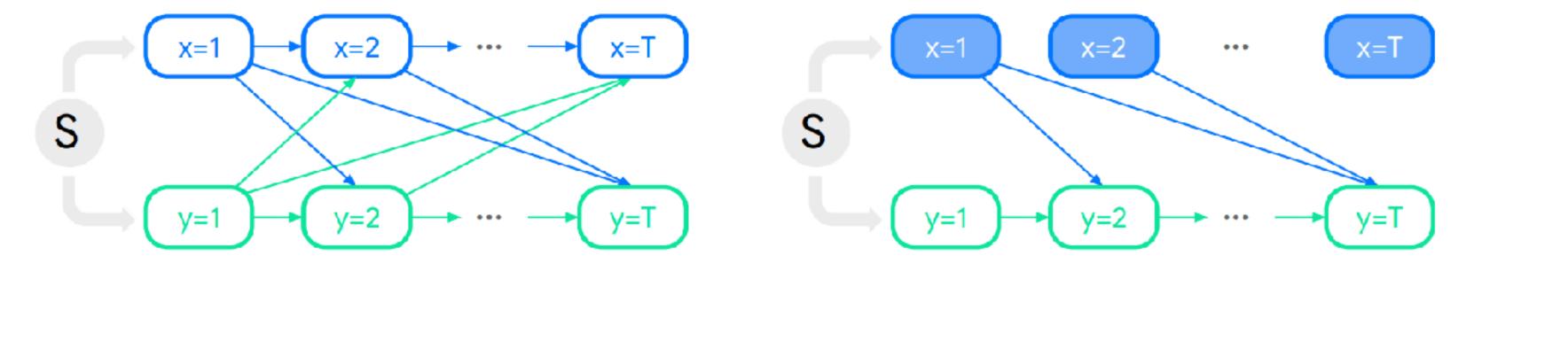
Waymo

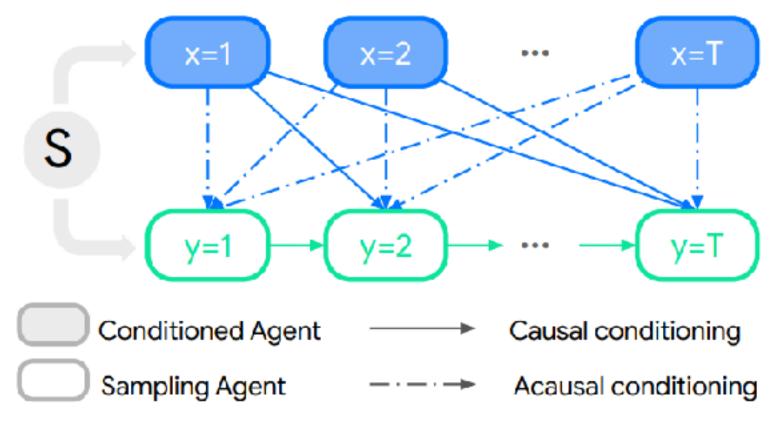


Architecture



How can we condition on the robot future?

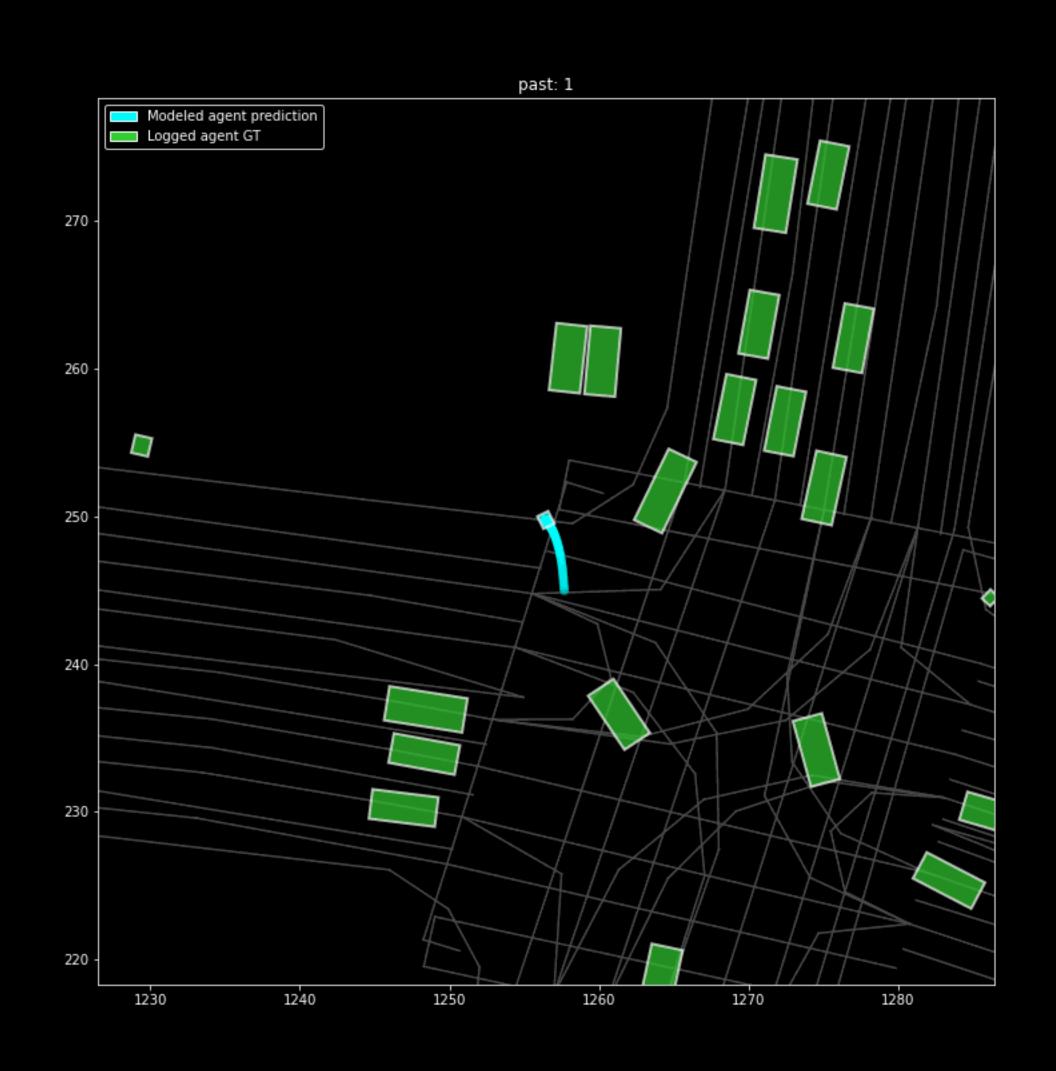


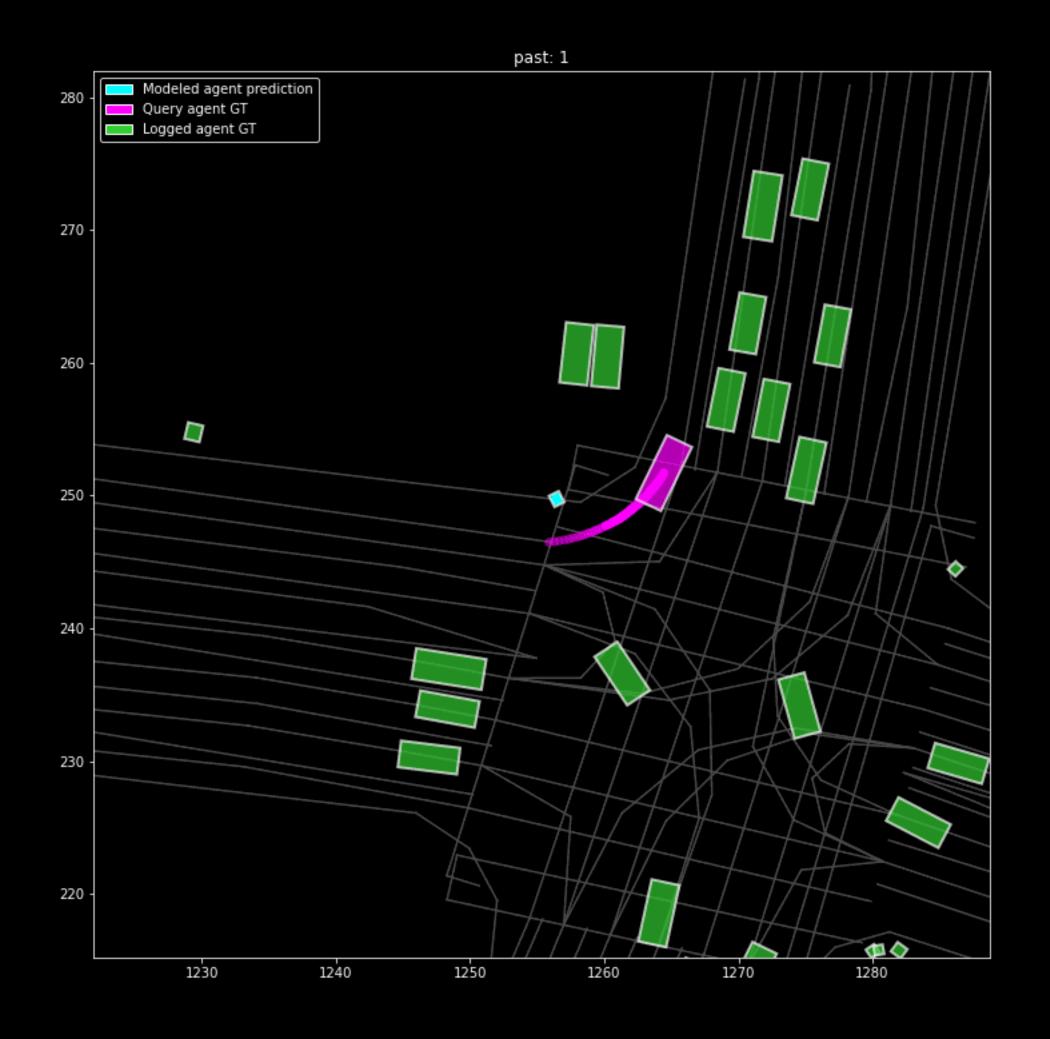


No future conditioning: Causual Attention

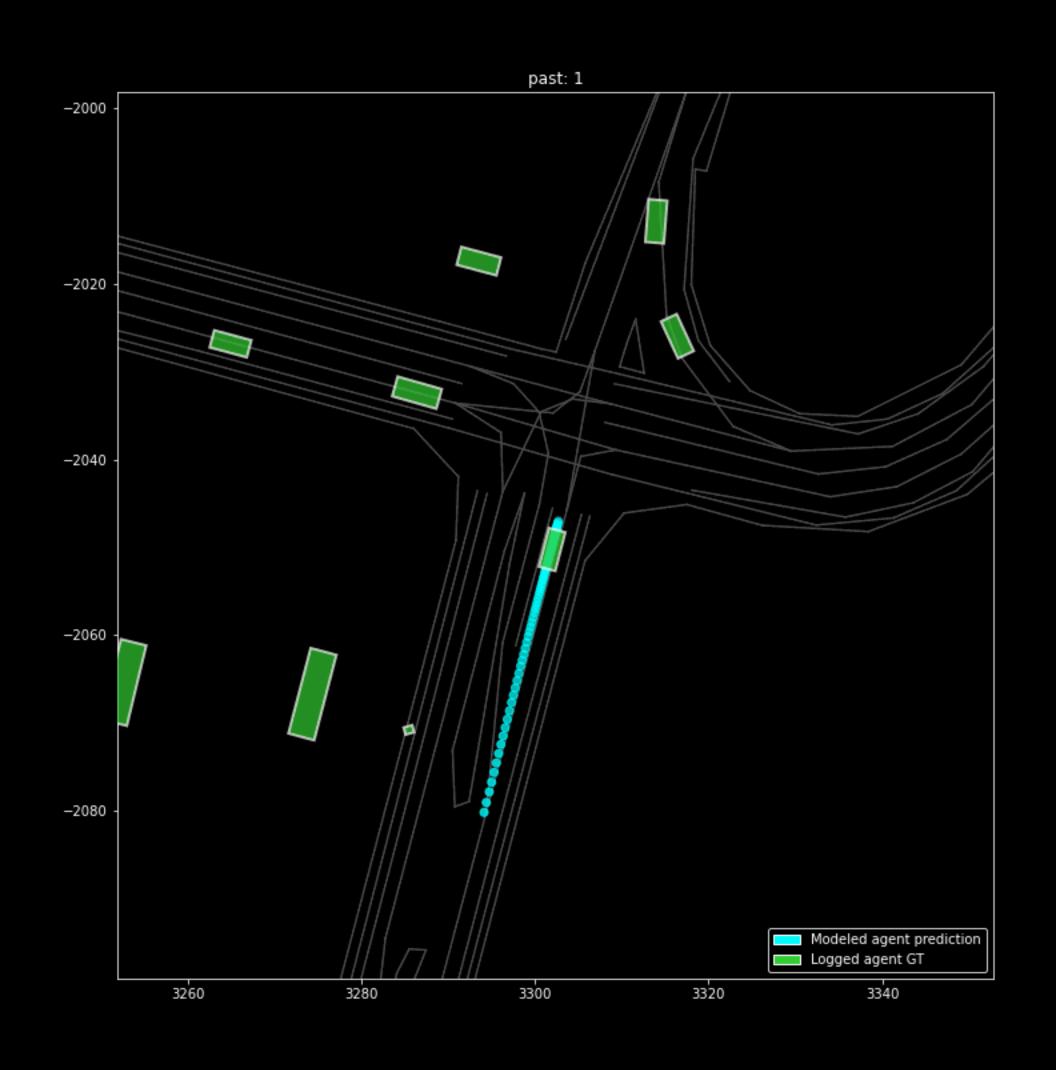
Future conditioning: Bi-Directional Attention

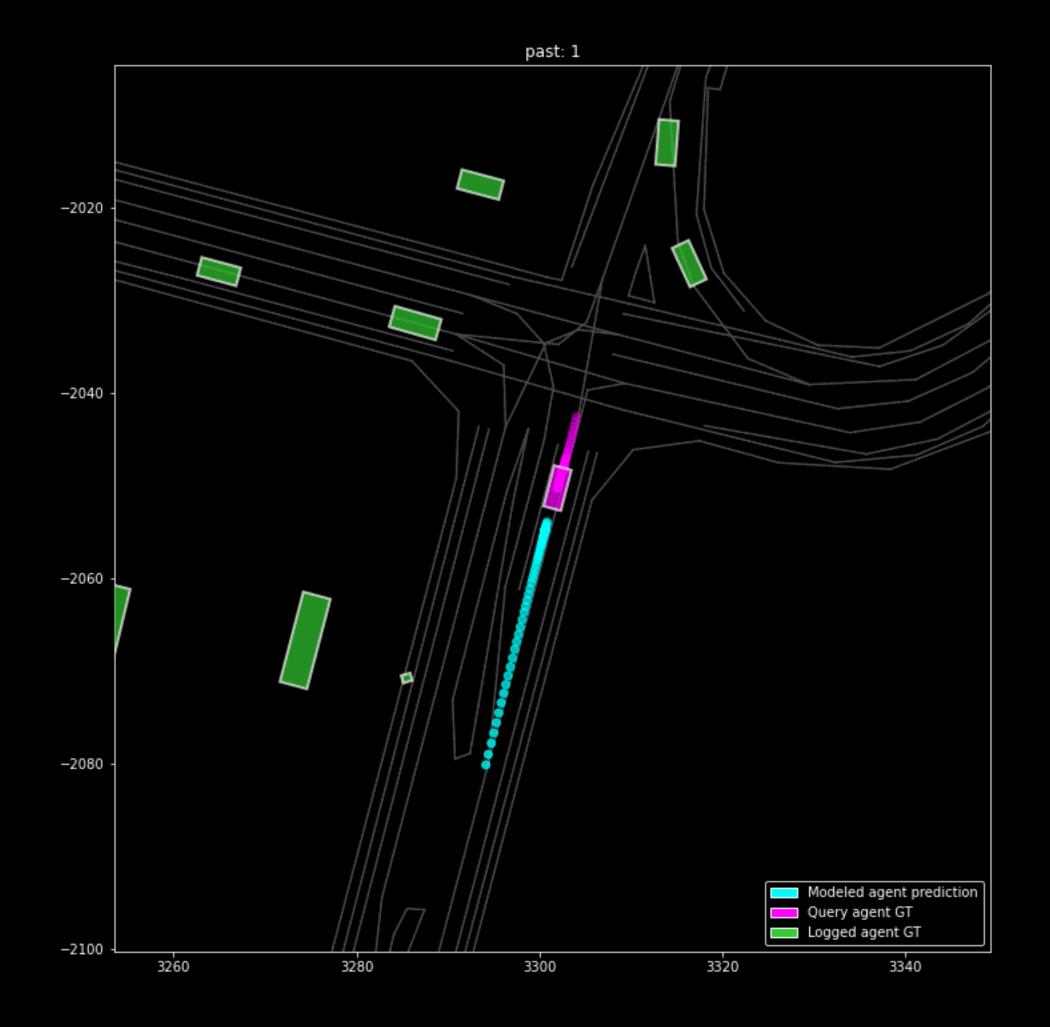
Marginal vs Conditional





Marginal vs Conditional





How can I use conditional forecasts in practice?

Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories Ξ

For $\xi_{plan} \in \Xi$:

Call conditional forecast with history and ξ_{plan} to predict $\xi_{forecast}$ for all the agents

Compute cost of ξ_{plan} using $\xi_{forecast}$

Return cheapest plan ξ_{plan}^*

Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories Ξ

For $\xi_{plan} \in \Xi$:

Call conditional forecast with history and ξ_{plan} to predict $\xi_{forecast}$ for all the agents

(Can do this in a batch!)

Compute cost of ξ_{plan} using $\xi_{forecast}$

Return cheapest plan ξ_{plan}^*

Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories Ξ

For $\xi_{plan} \in \Xi$:

Call conditional forecast with history and ξ_{plan} to predict $\xi_{forecast}$ for all the agents

Compute cost of ξ_{plan} using $\xi_{forecast}$

Return cheapest plan ξ_{plan}^*

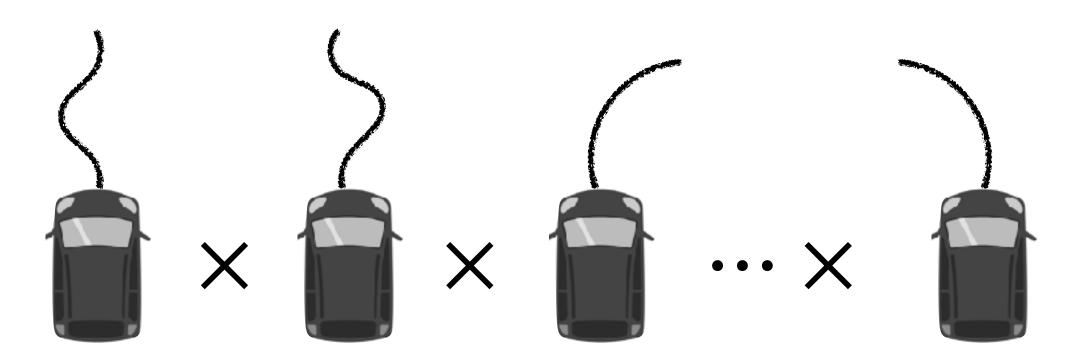
Trajectories are continuous sequences of motion. Space of all candidate trajectories is huge!!

Problem: Space of joint trajectories is massive



Continuous space of trajectories

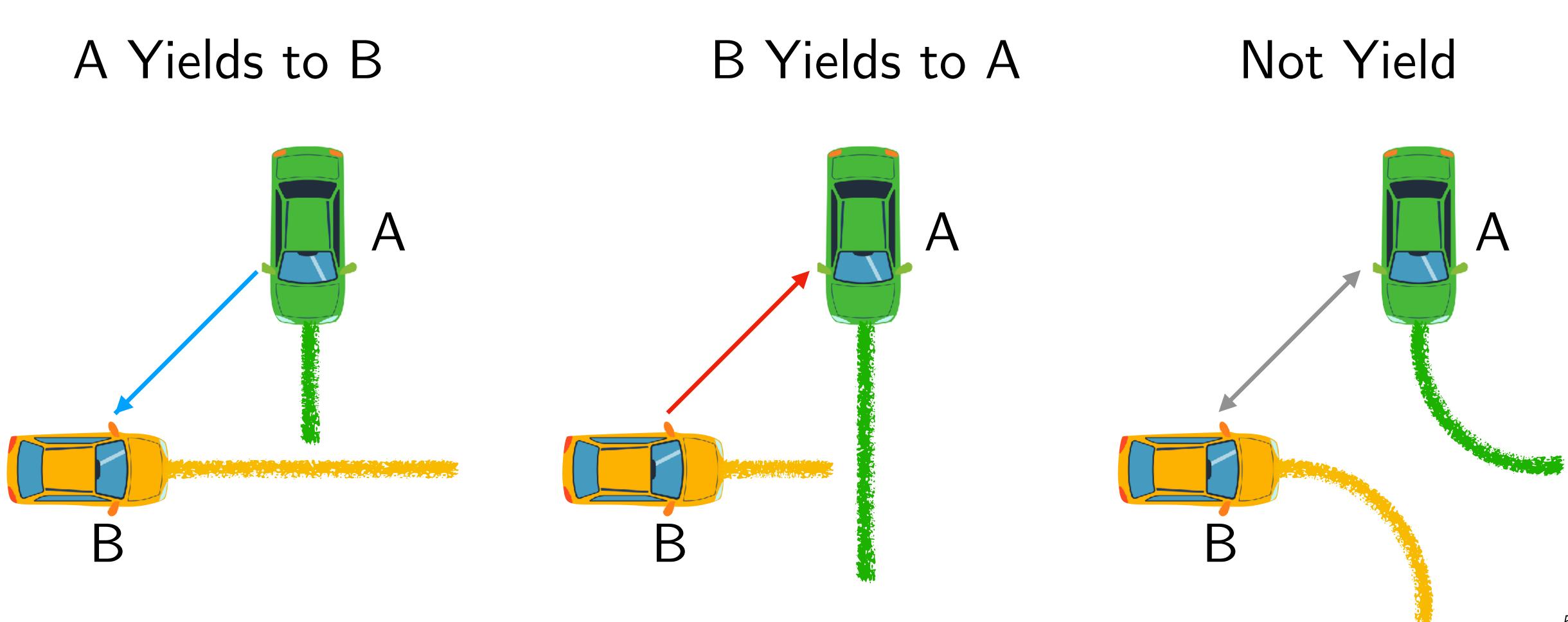
Exponentially with in actors



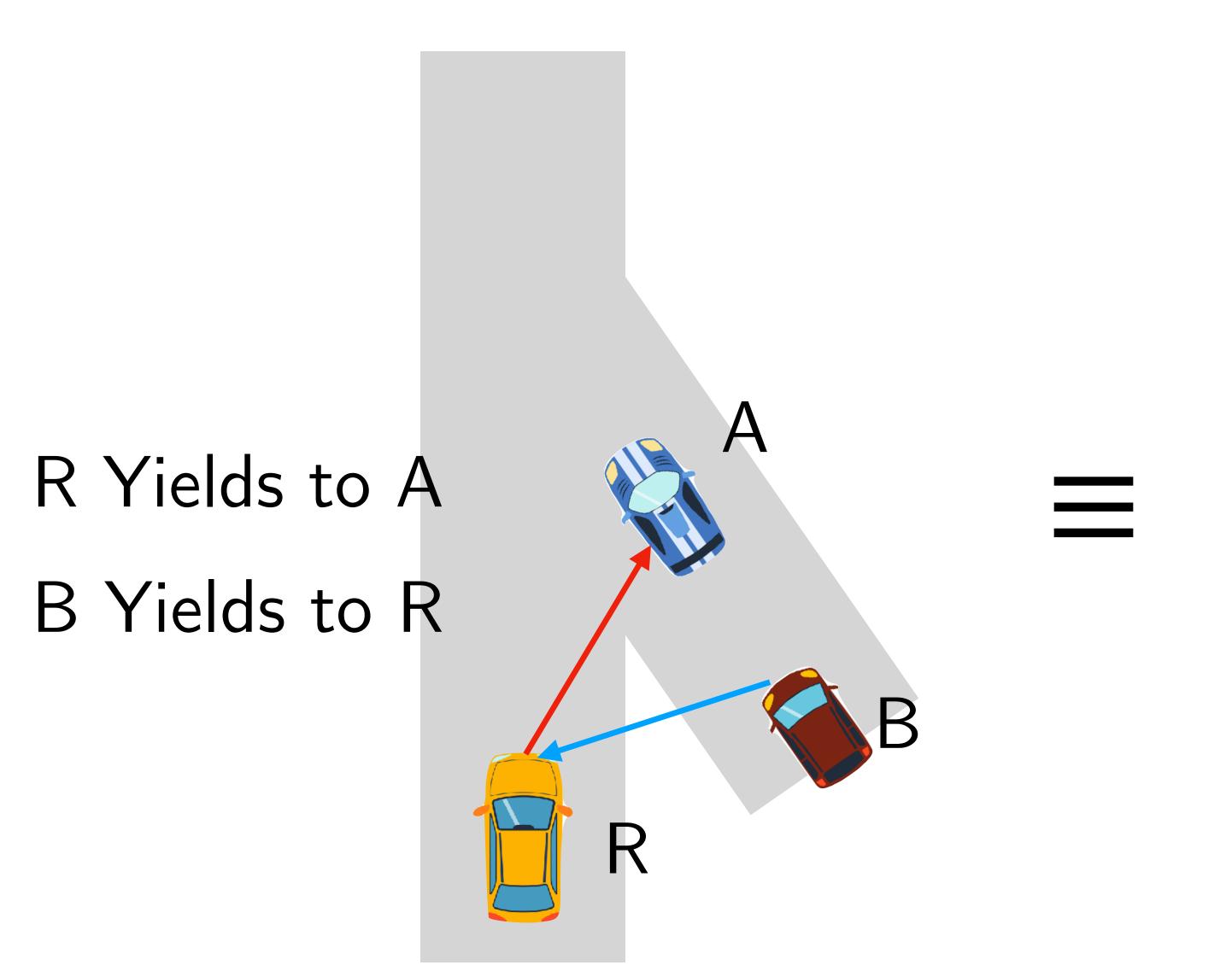
Conditional forecasting just makes this even harder

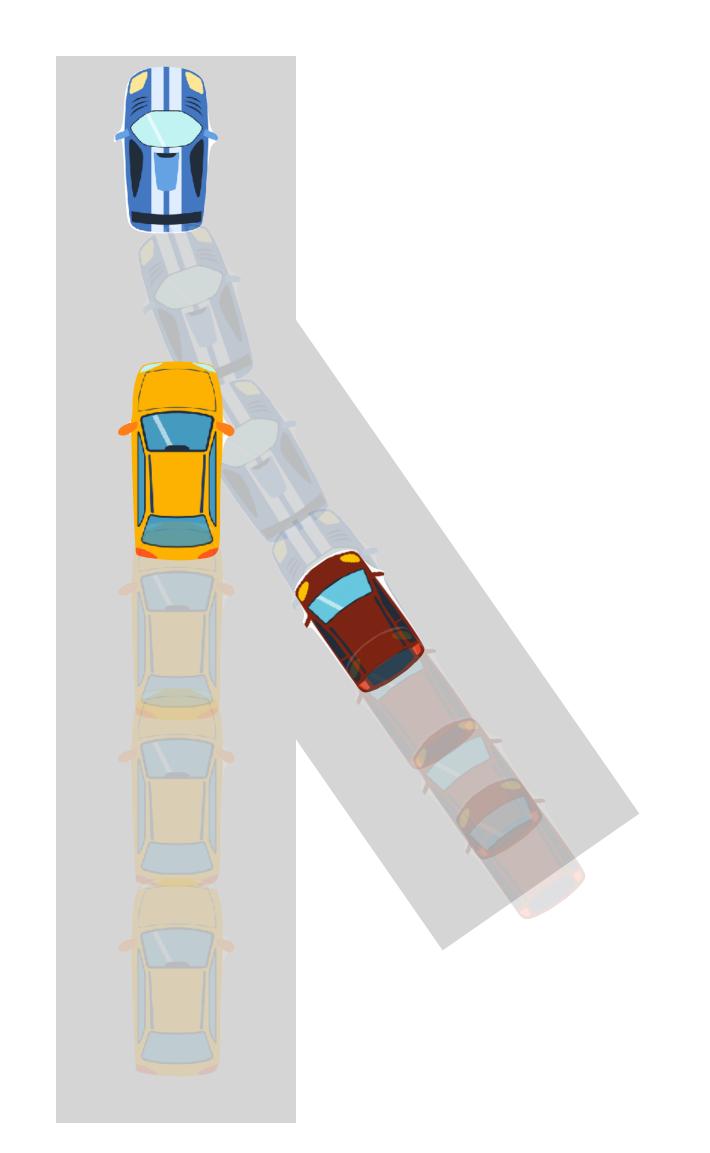
There is a discrete grammar for self-driving ...

3 fundamental modes of space-time paths

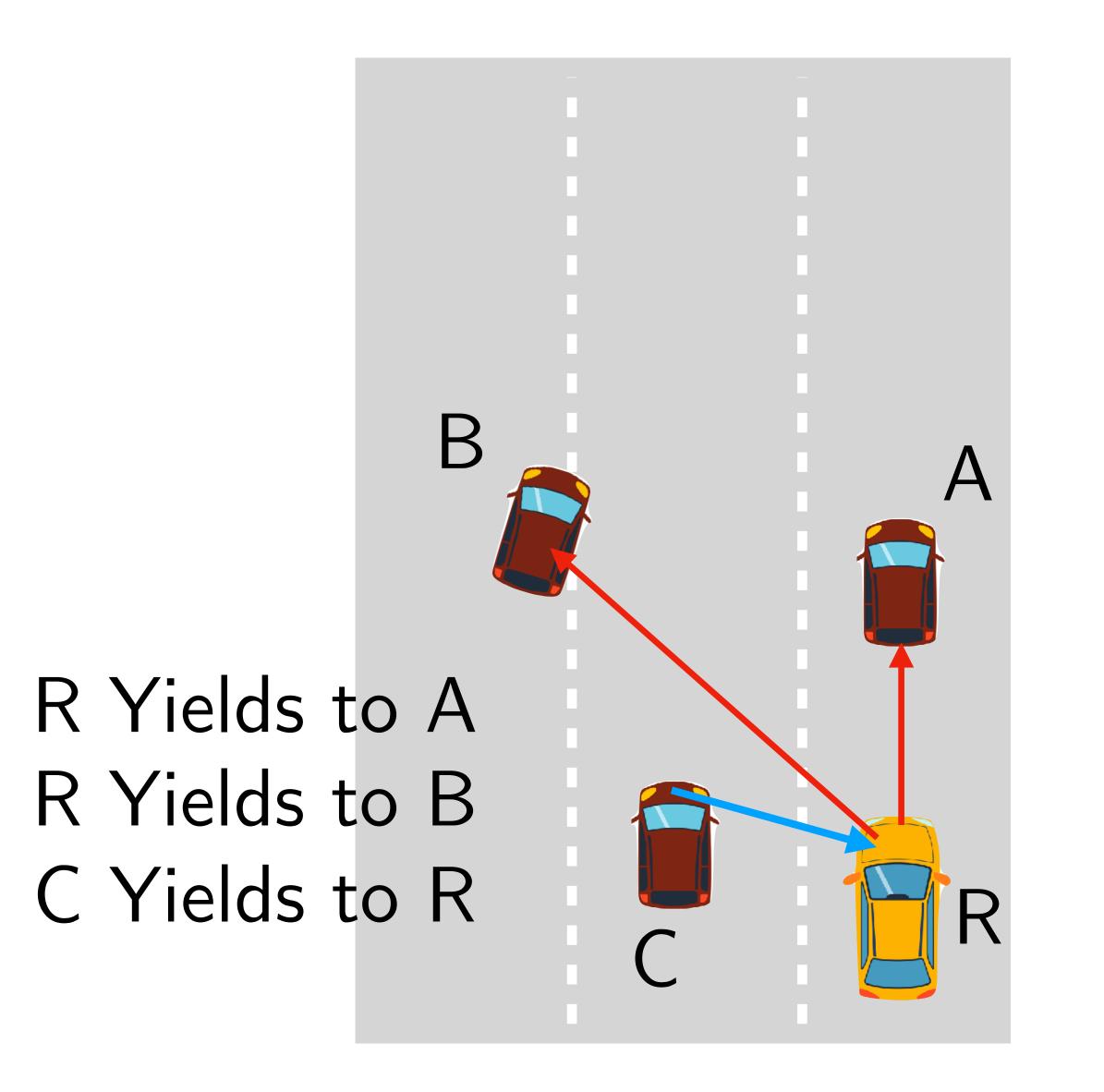


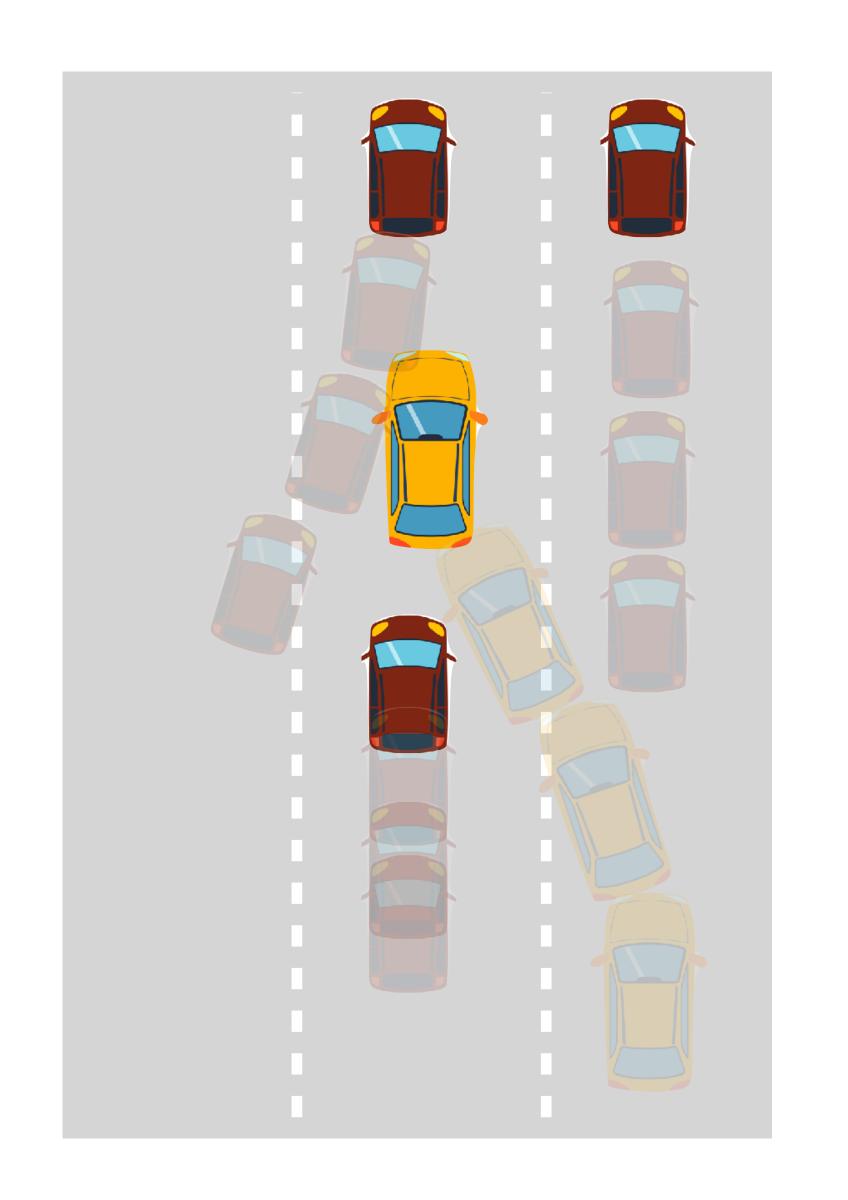
Mode = A single basin of forecast



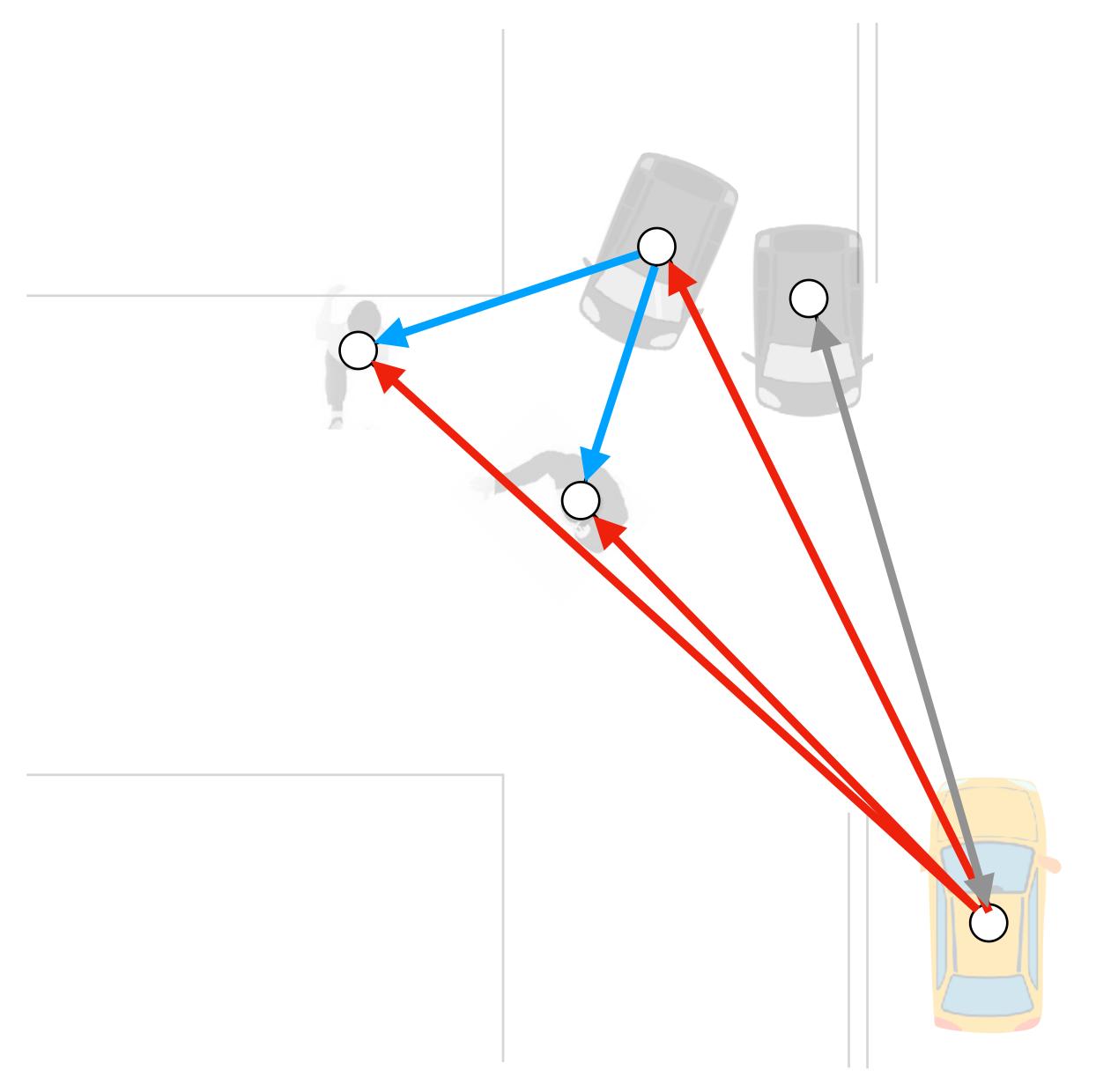


Mode = A single basin of forecast





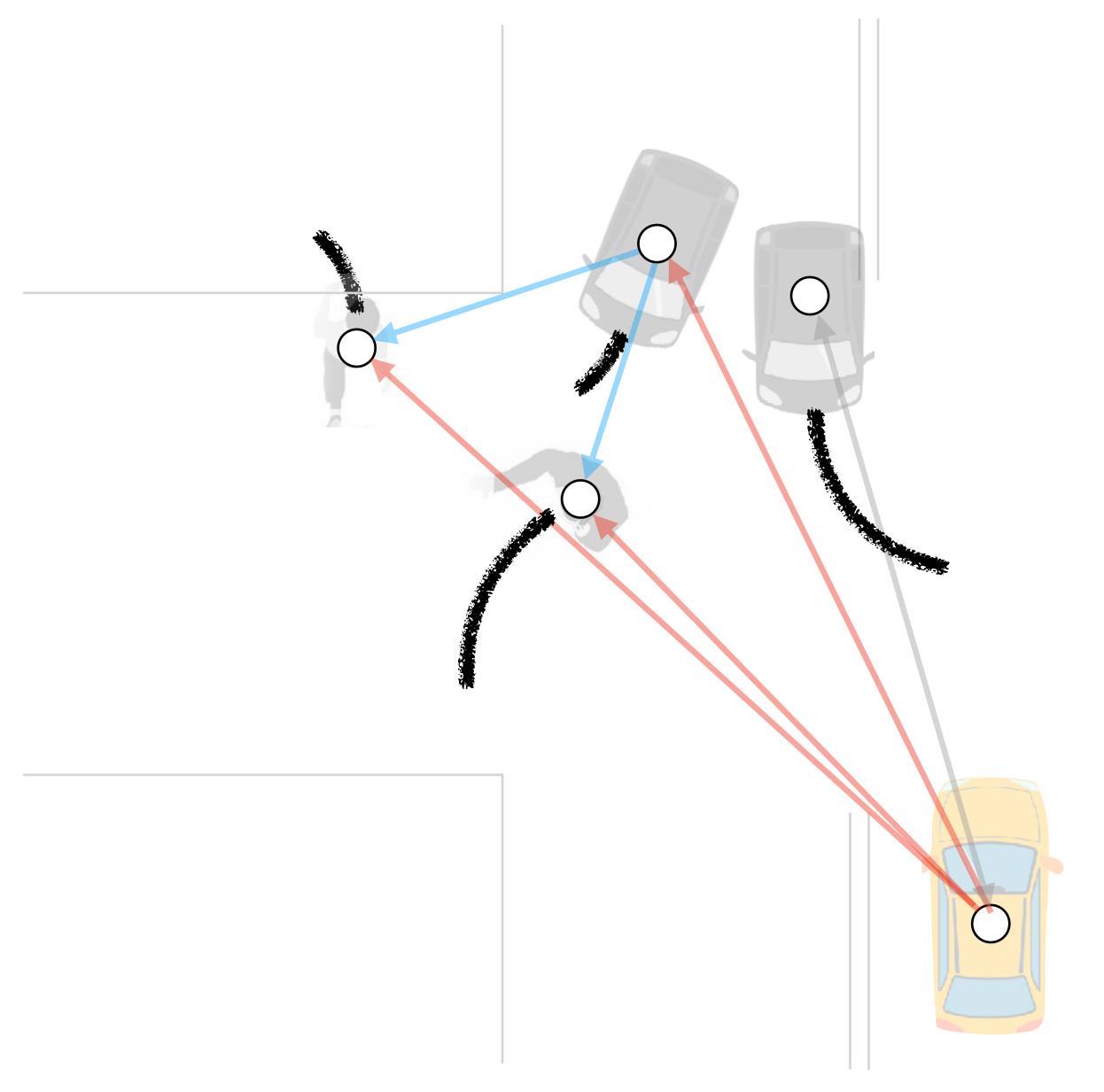
Condition on robot plan mode



Given a set of modes chosen by the robot

Infer what modes others are likely to choose

Message Passing on a Graph

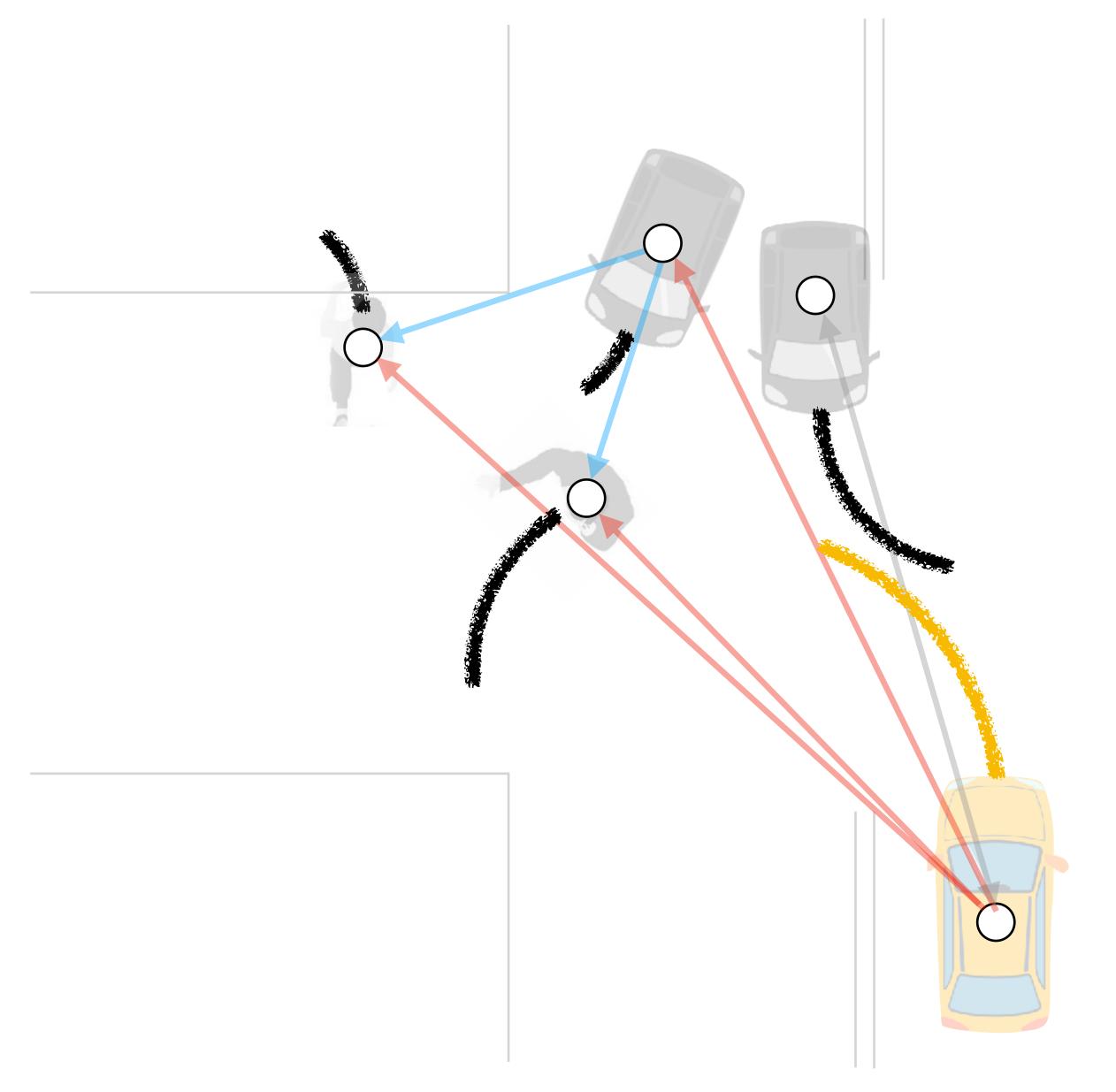


Given a set of modes chosen by the robot

Infer what modes others are likely to choose

Forecast actors given modes

Message Passing on a Graph

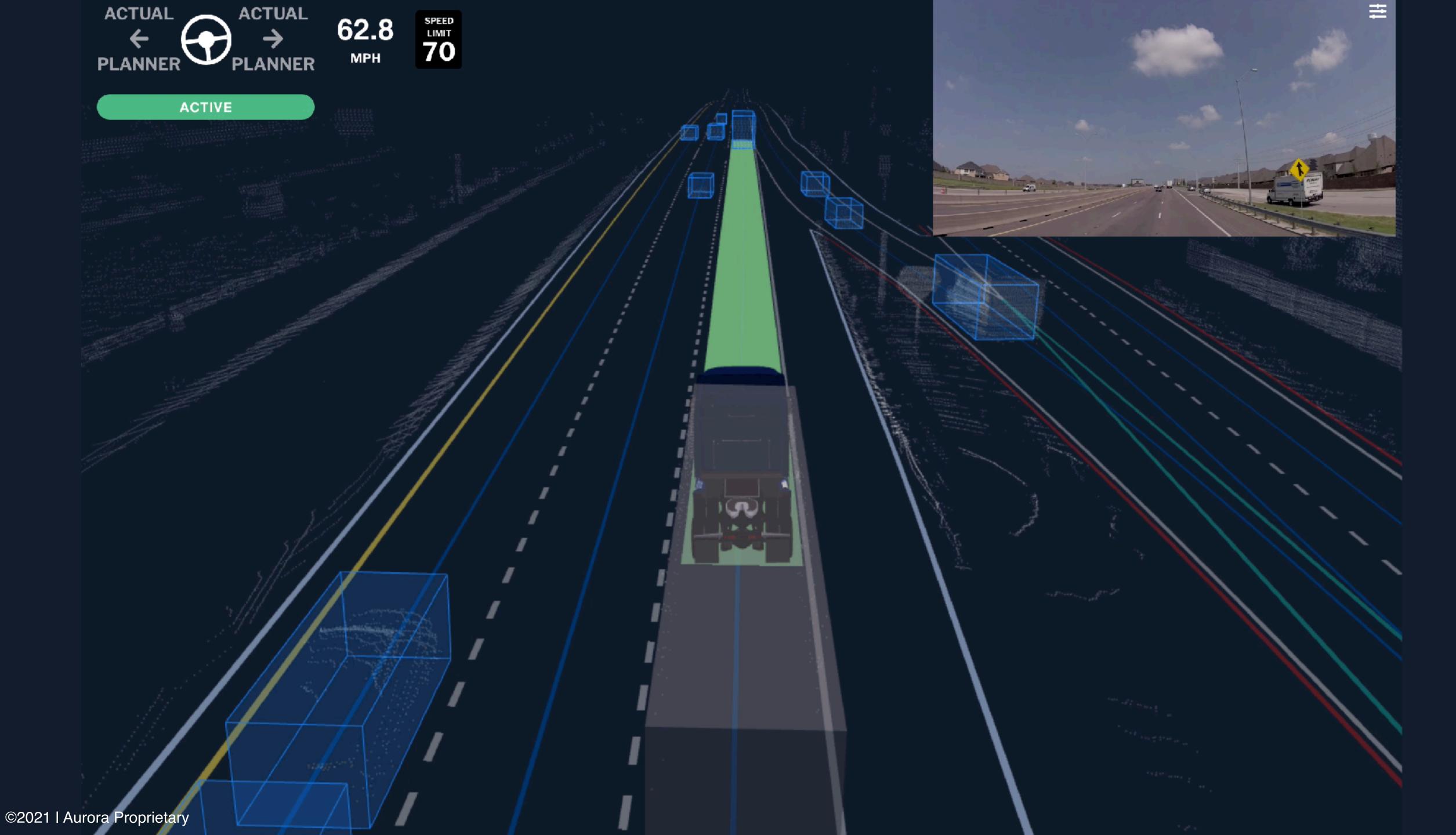


Given a set of modes chosen by the robot

Infer what modes others are likely to choose

Forecast actors given modes

Plan given forecast



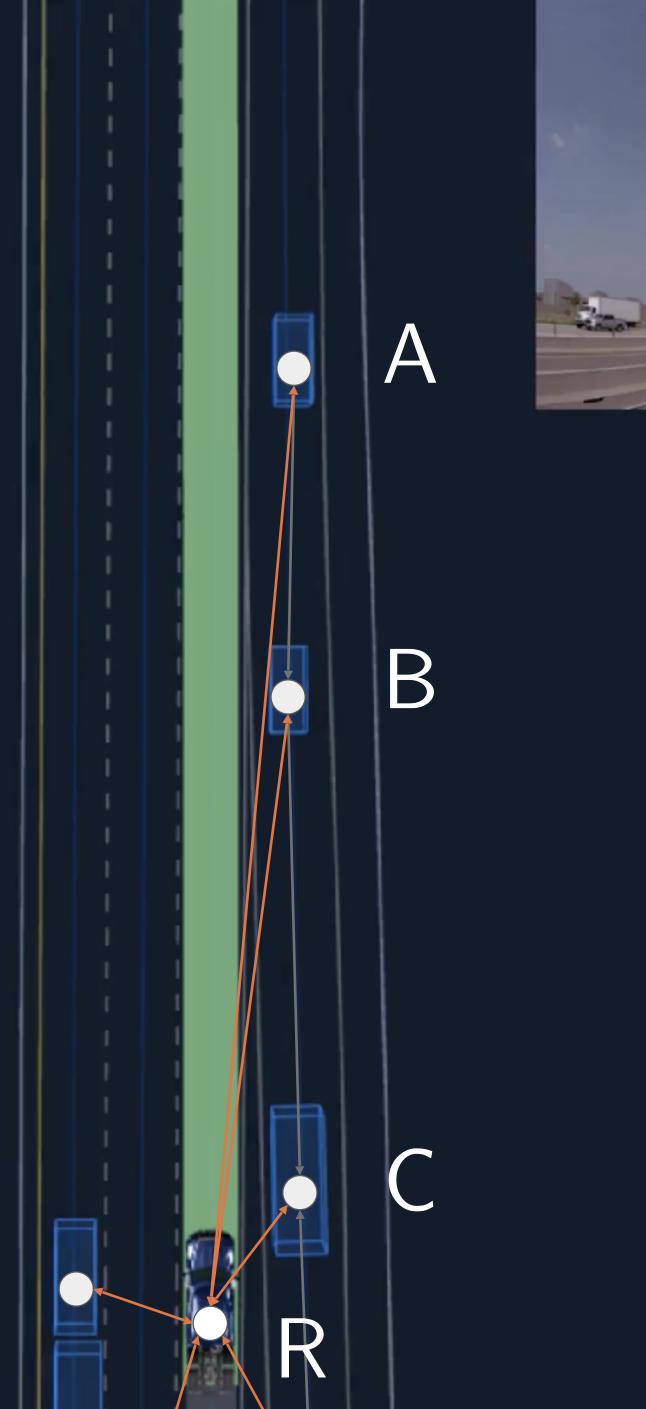
LIMIT 70

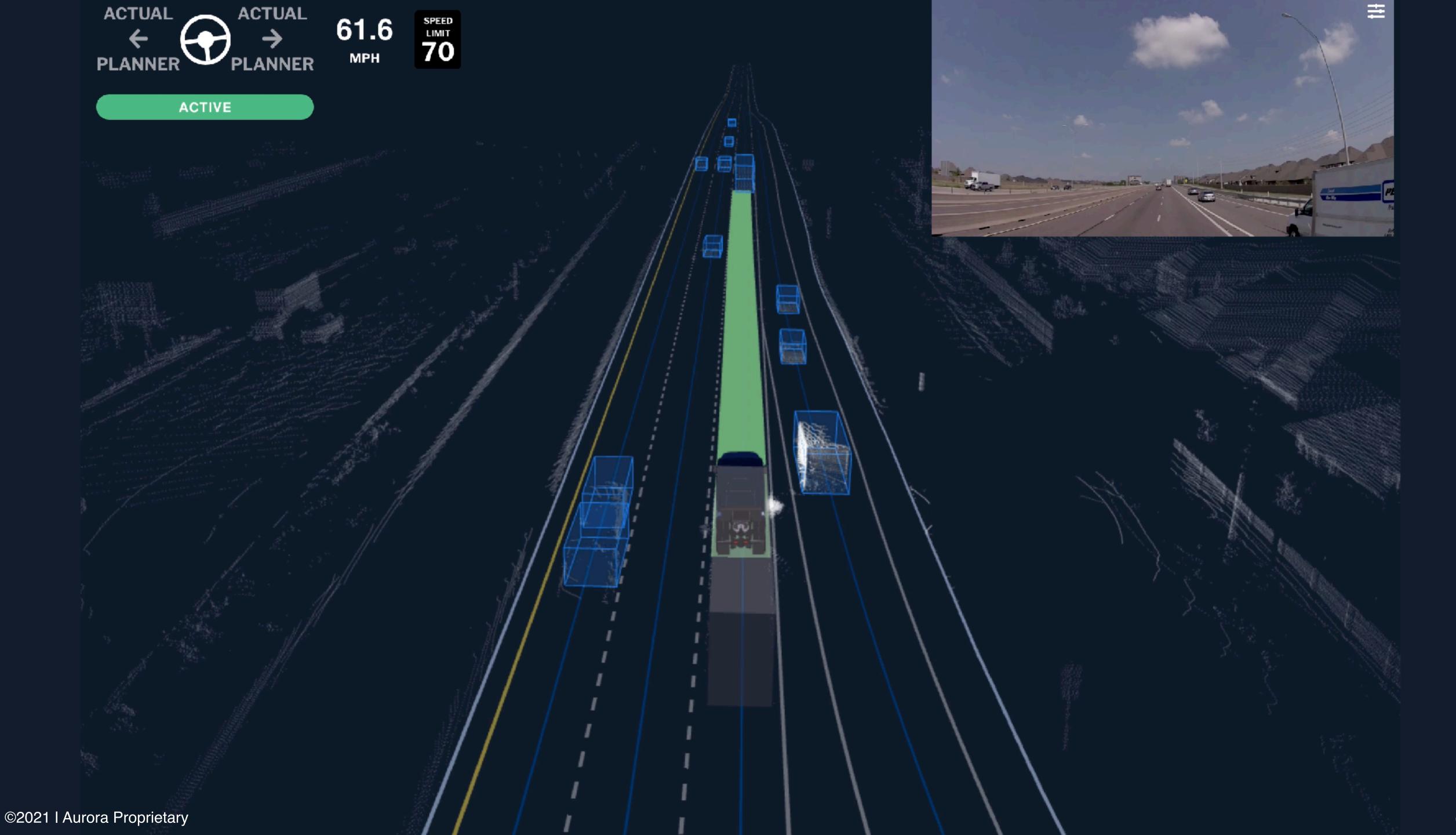
ACTIVE

R Yields to A

R Yields to B

C Yields to R





Shaky foundations of forecasting

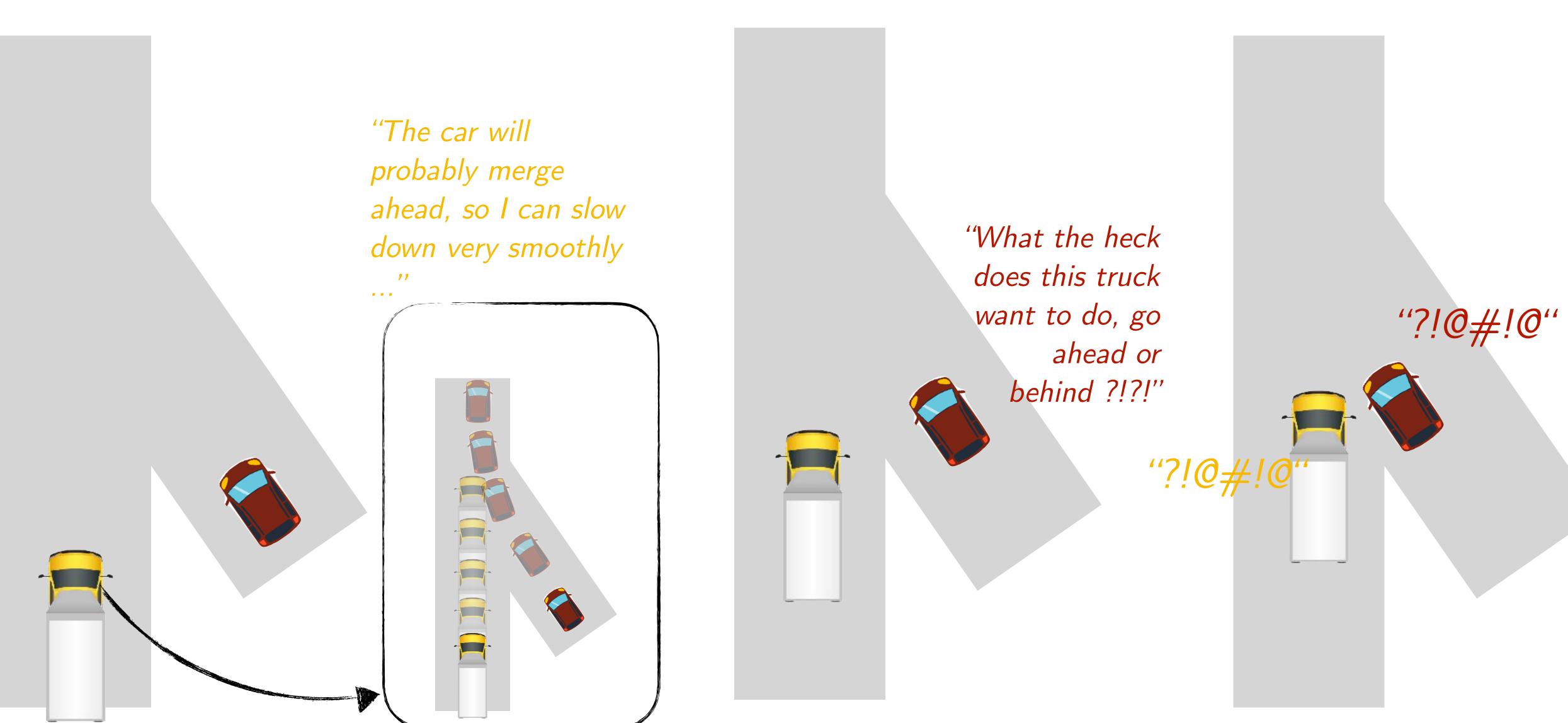
Are we using the right model?

Conditional forecasting

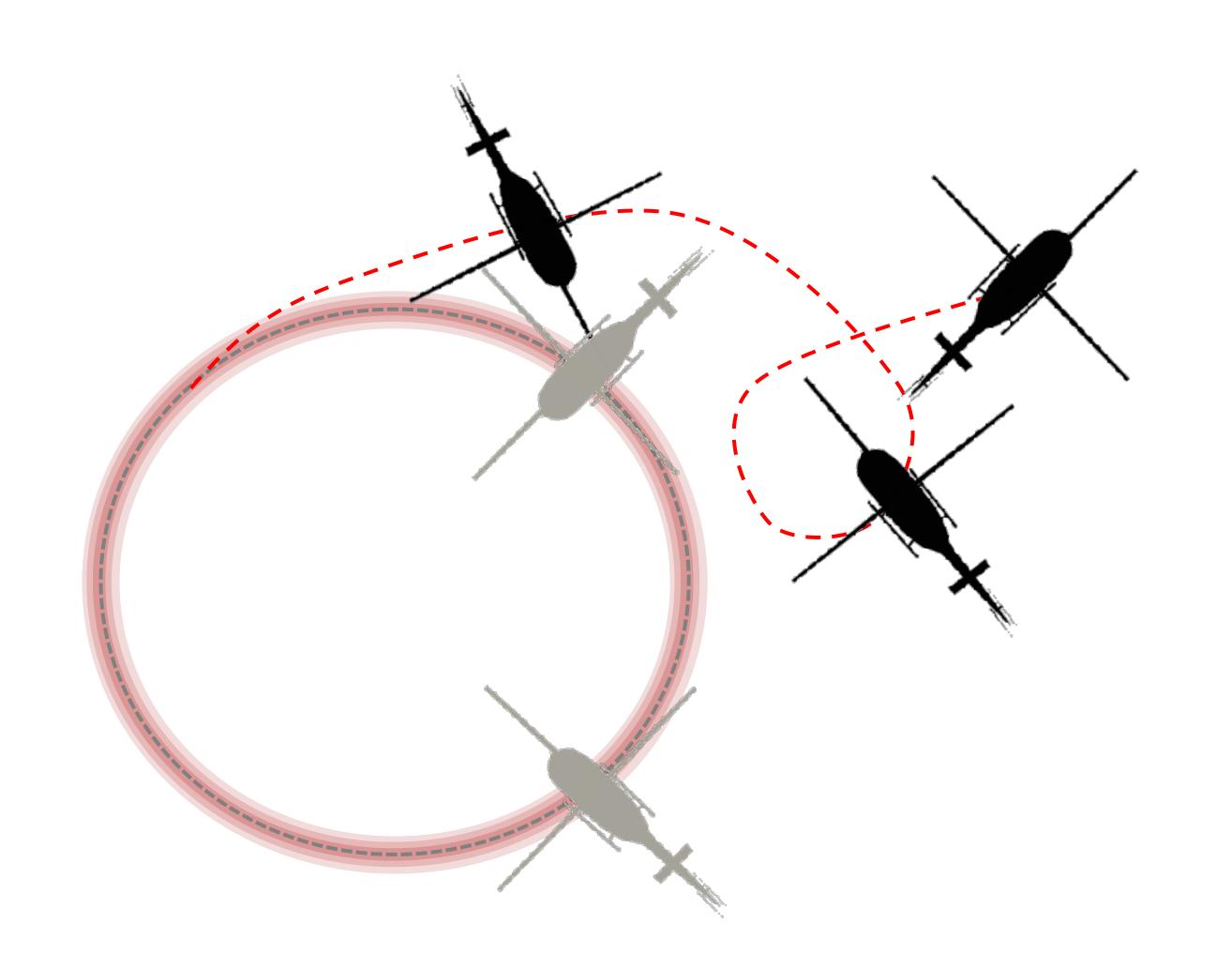
Are we collecting data correctly?

Are we using the right loss?

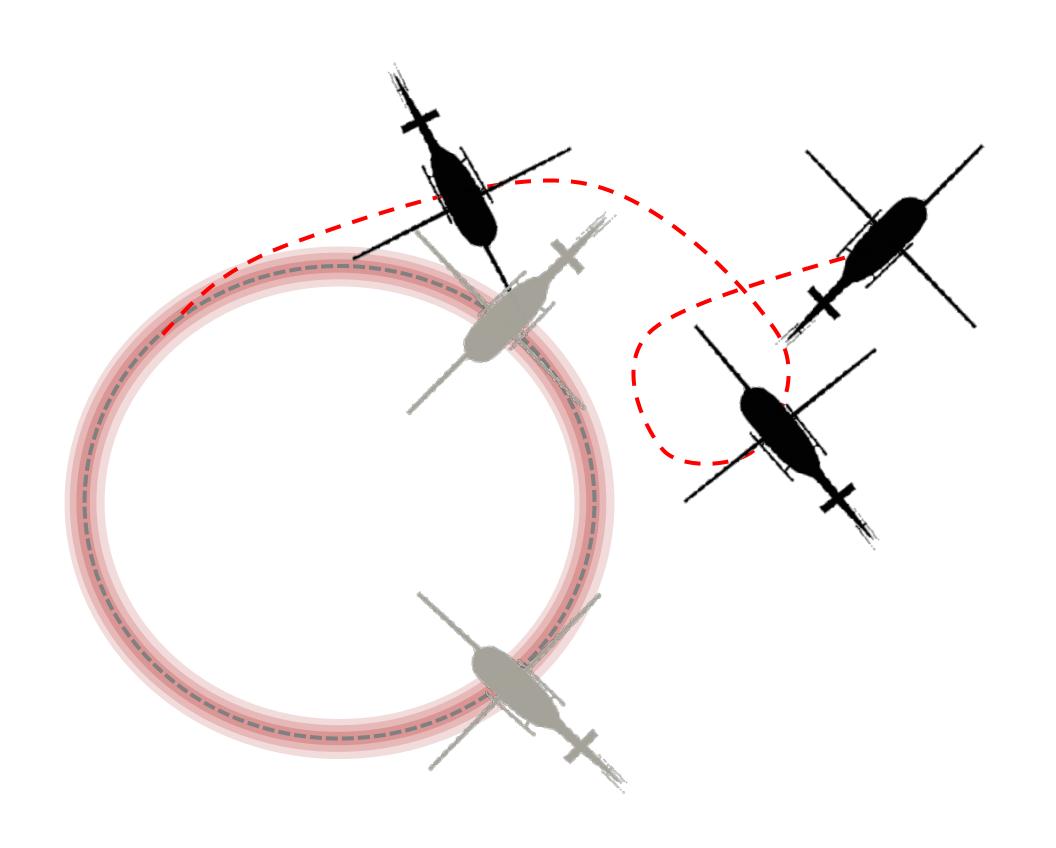
What happens when we deploy model?

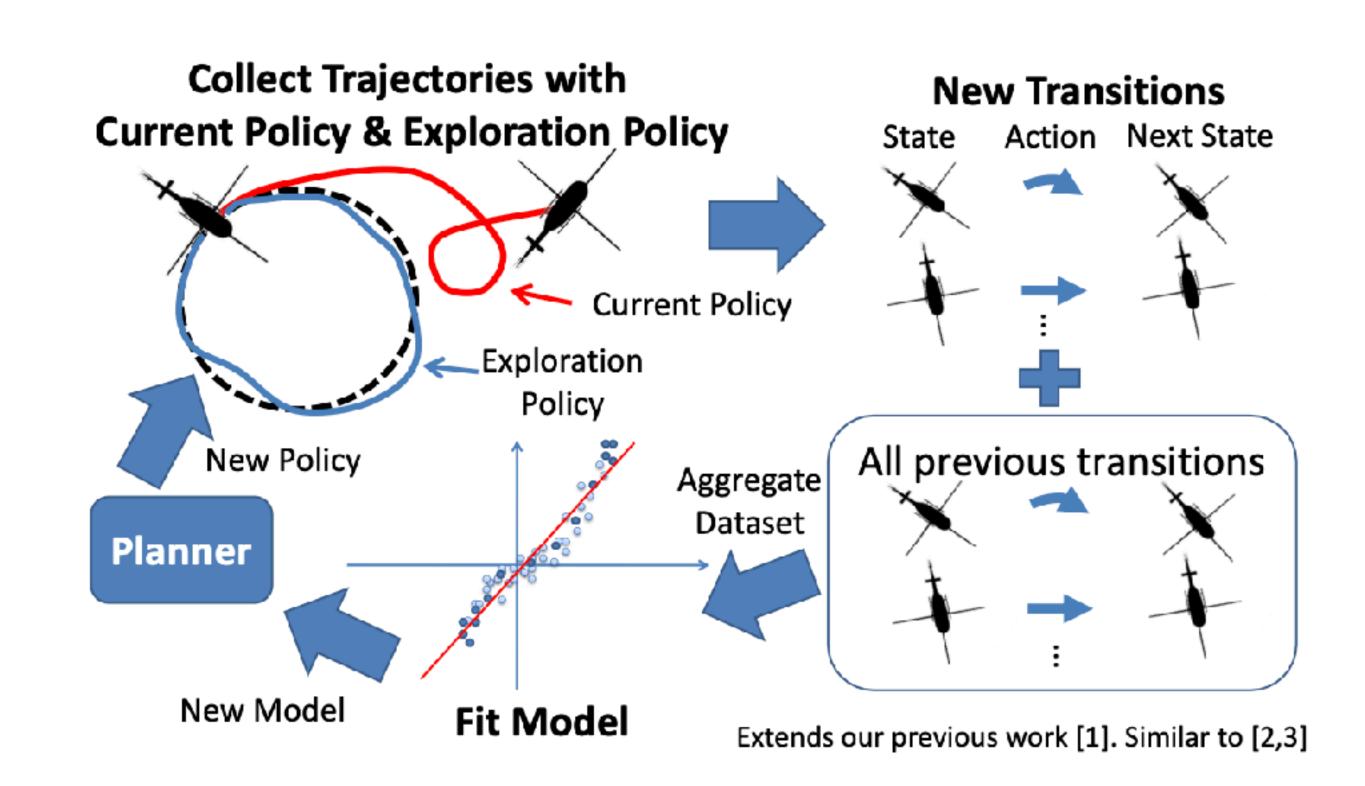


We have seen this problem before!

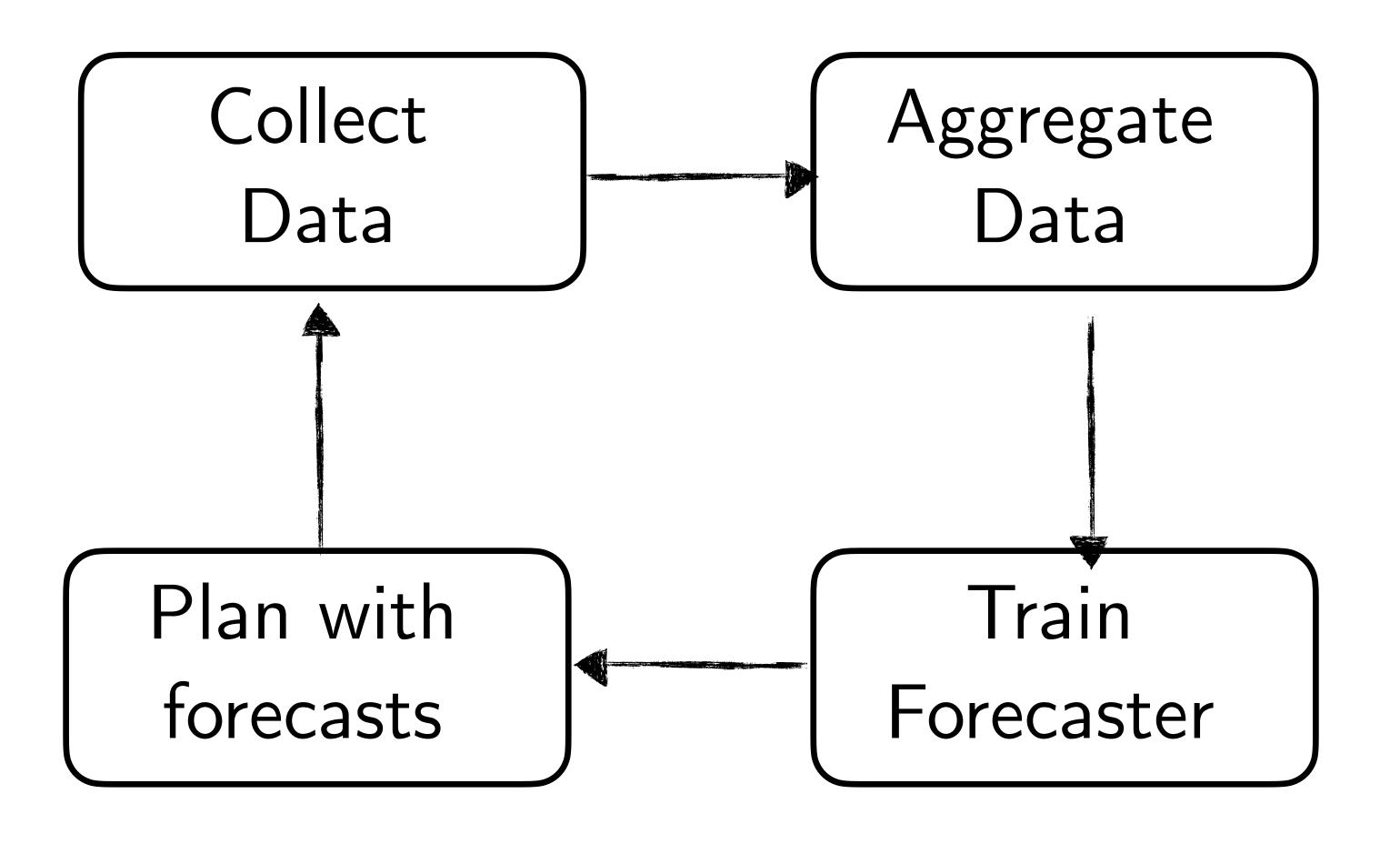


Solution: DAGGER for SysID





DAGGER for Forecasting!



Shaky foundations of forecasting

Are we using the right model?

Conditional forecasting

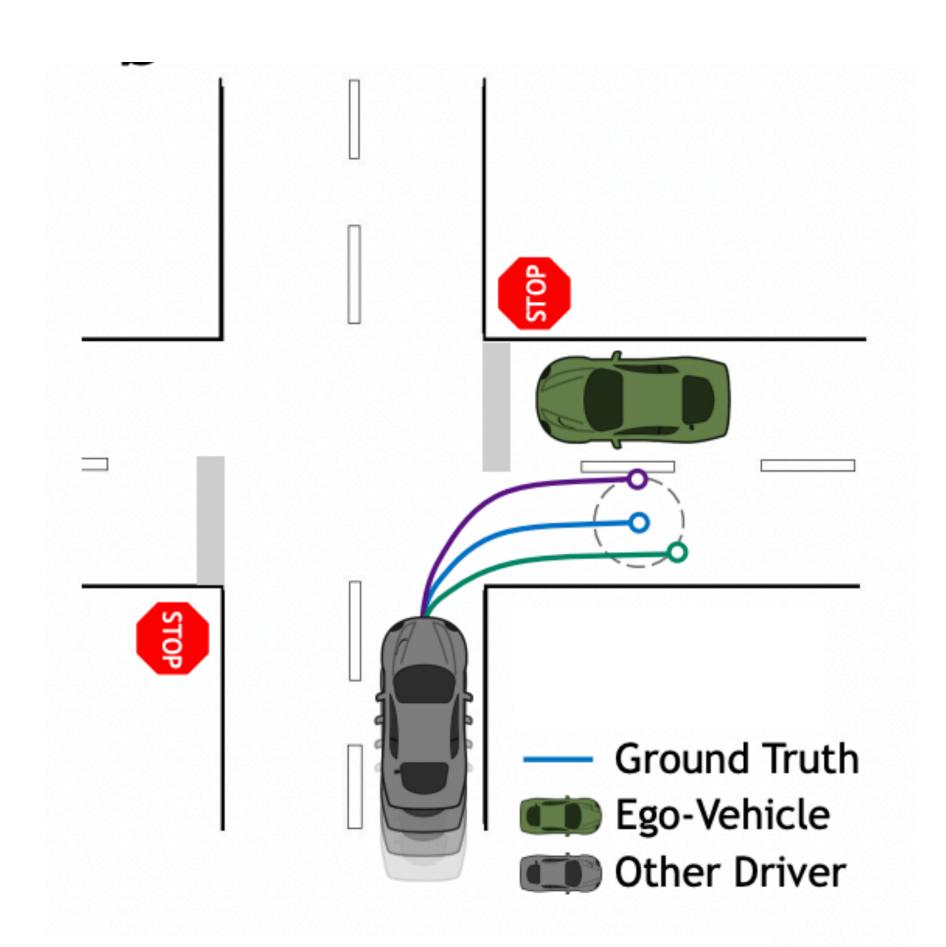
Are we collecting data correctly?

Interactively collect data

Are we using the right loss?

Is L2 loss the right loss function to use?

Is L2 loss the right loss function to use?

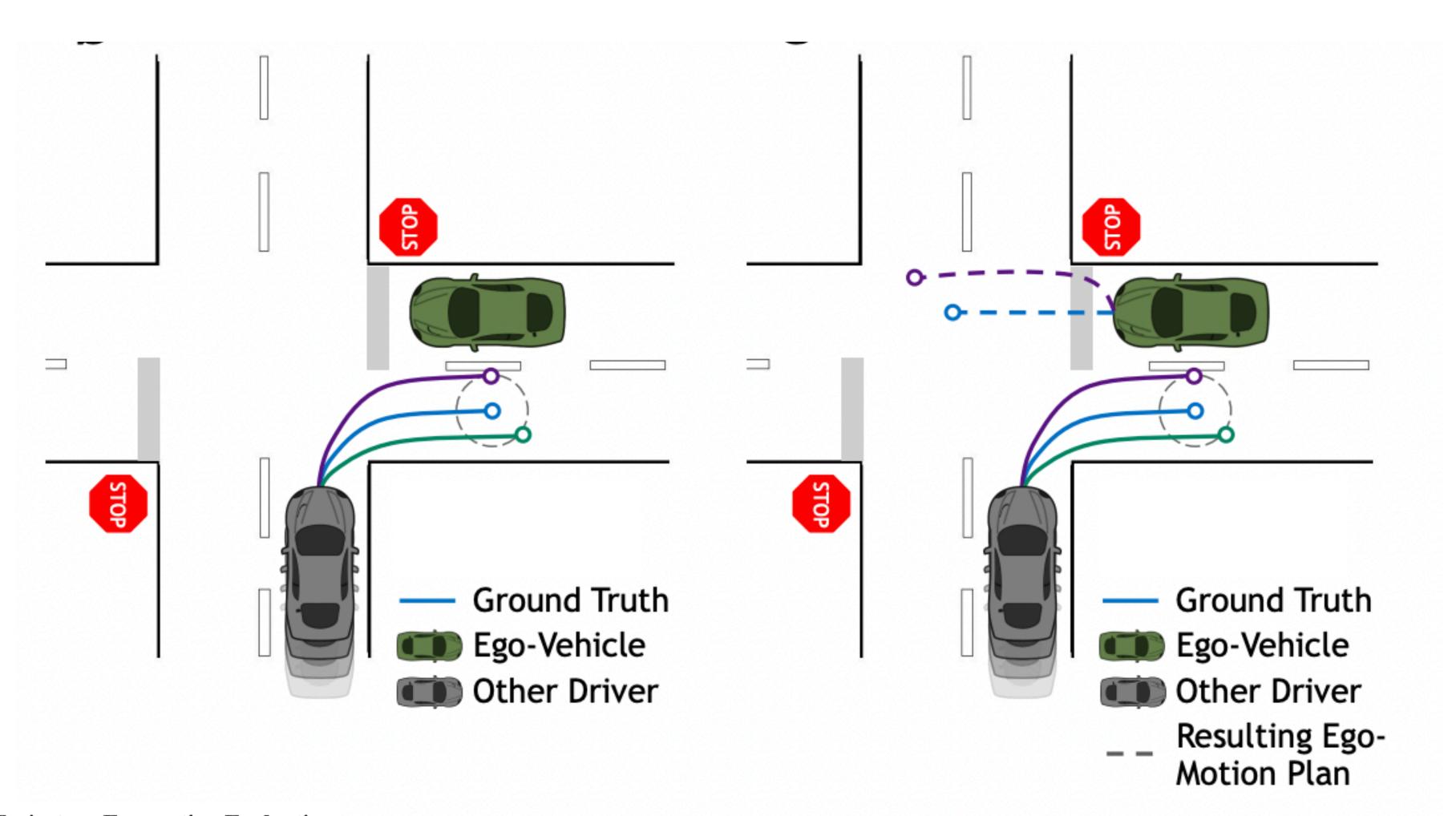


Rethinking Trajectory Forecasting Evaluation

Boris Ivanovic Marco Pavone NVIDIA Research {bivanovic, mpavone}@nvidia.com Both forecast 1 and forecast 2 have the same L2 error

Which one would you prefer? Why?

What makes forecasts good?



Rethinking Trajectory Forecasting Evaluation

Forecasting is just a Model

Models are useful fictions

Forecasting <-> Model-based RL

Conditional Forecasts

Model

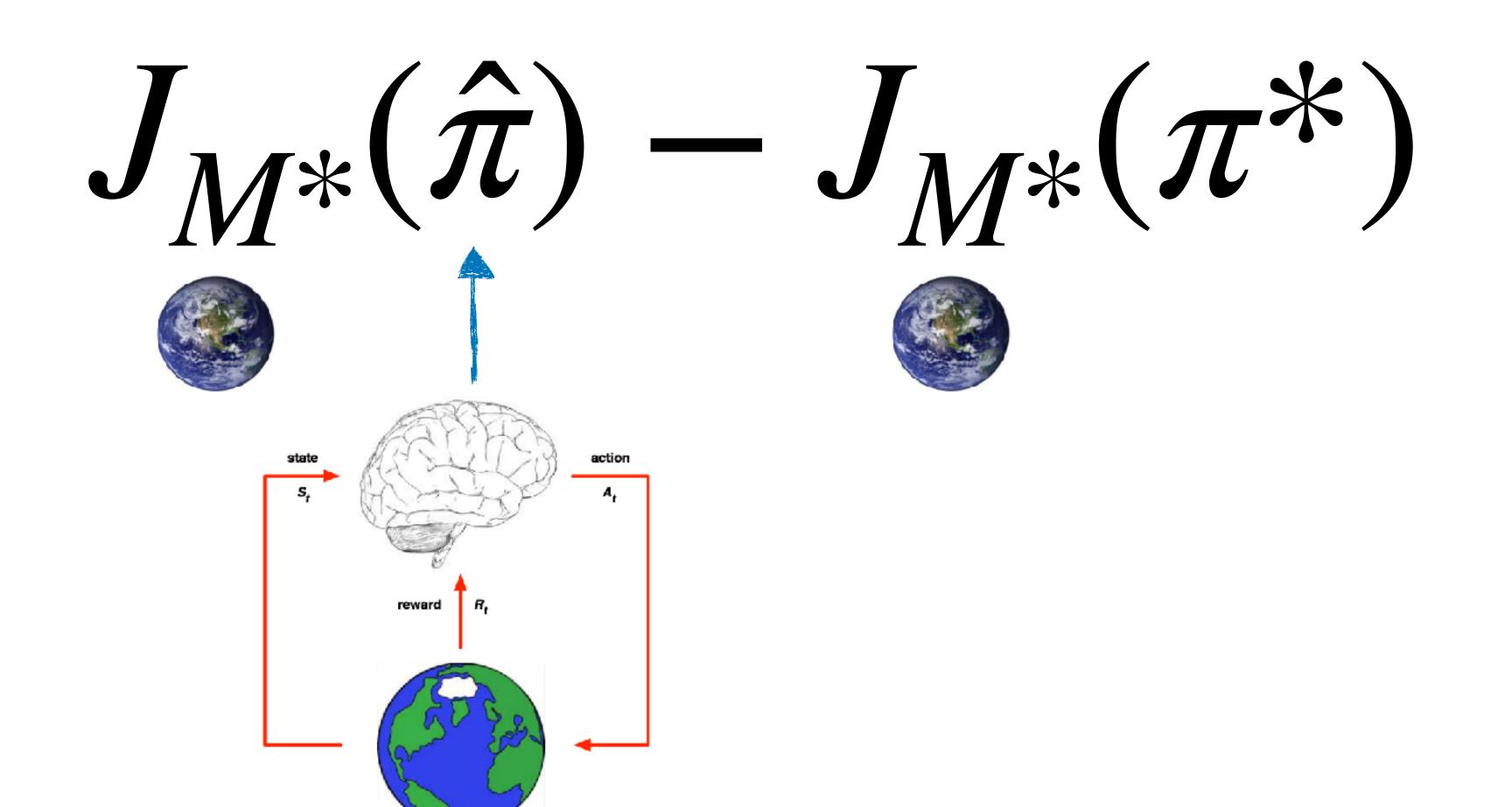
$$P(S_{t:t+k} | S_{t:t-k}, \xi_{plan})$$

$$M(s_{t+1} \mid s_t, a_t)$$

We know how to solve model-based RL (previous lecture!)

What is the ONE true loss that we care about?

Performance Difference between our policy and the expert



Recall: Perf Diff implies matching Values

$$J_{M^*}(\pi^*) - J_{M^*}(\hat{\pi})$$

$$=\mathbb{E}_{s^*\sim\pi^*}\left[A^{\hat{\pi}}(s^*,a^*)\right]$$

Advantage of expert in model

$$+ T \mathbb{E}_{s,a\sim\pi^*} \left[E_{s'\sim\hat{M}} V^{\hat{\pi}}(s') - E_{s''\sim M^*} V^{\hat{\pi}}(s'') \right]$$

Value matching on expert states

$$+ T \mathbb{E}_{s,a \sim \hat{\pi}} \left[E_{s' \sim \hat{M}} V^{\hat{\pi}}(s') - E_{s'' \sim M^*} V^{\hat{\pi}}(s'') \right]$$

Value matching on learner states

A simple loss function

Replace L2 Loss

With cost difference loss

$$||\xi - \xi_{gt}||^2 ||c(\xi) - c(\xi_{gt})||^2$$

Where c(.) are a set of cost features (proximity, jerkiness etc)

Shaky foundations of forecasting

Are we using the right model?

Conditional forecasting

Are we collecting data correctly?

Interactively collect data

Are we using the right loss?

Performance Difference



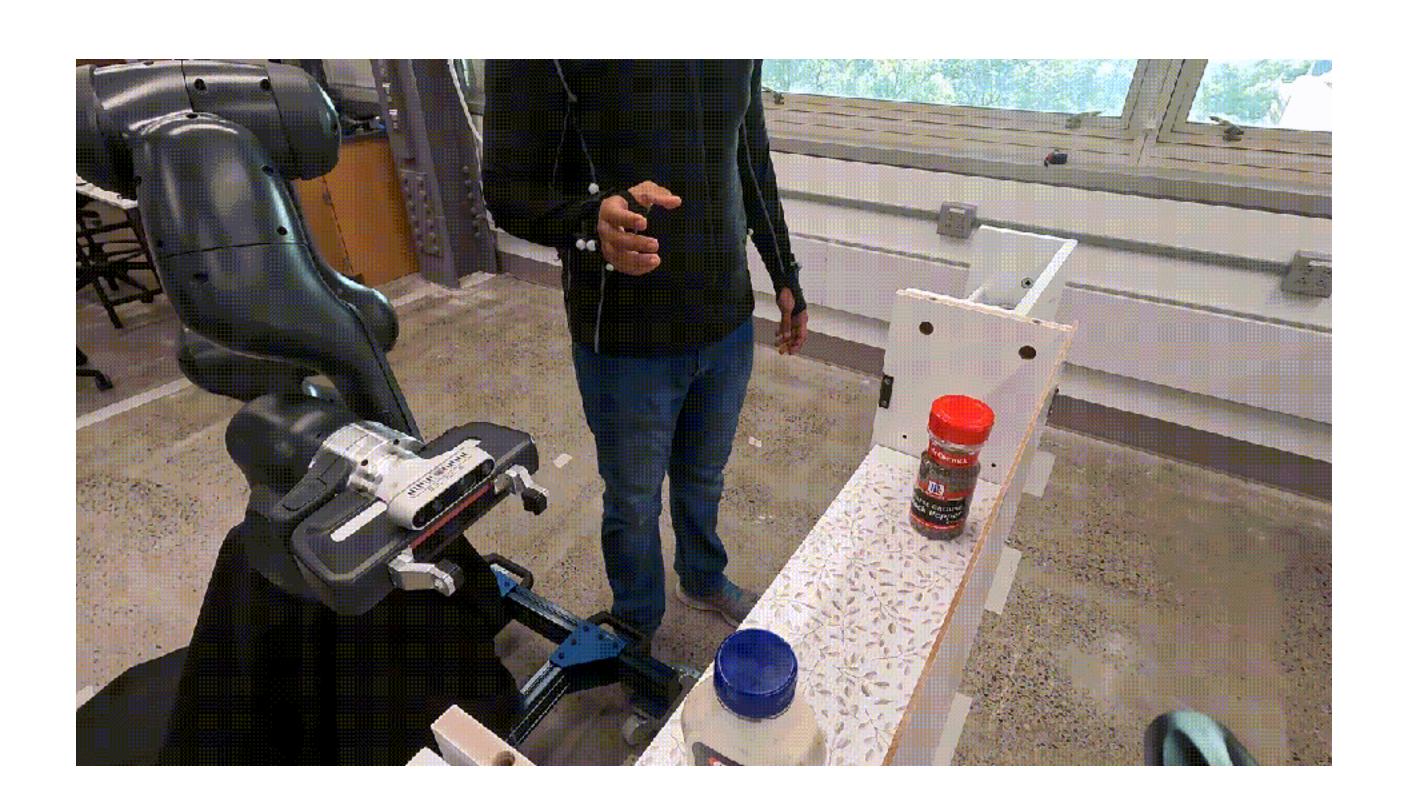
Do these ideas extend beyond self-driving?

K. Kedia, P. Dan, A. Bhardwaj, S. Choudhury ManiCast: Collaborative Manipulation with Cost-Aware Human Forecasting. *CORL 2023.*

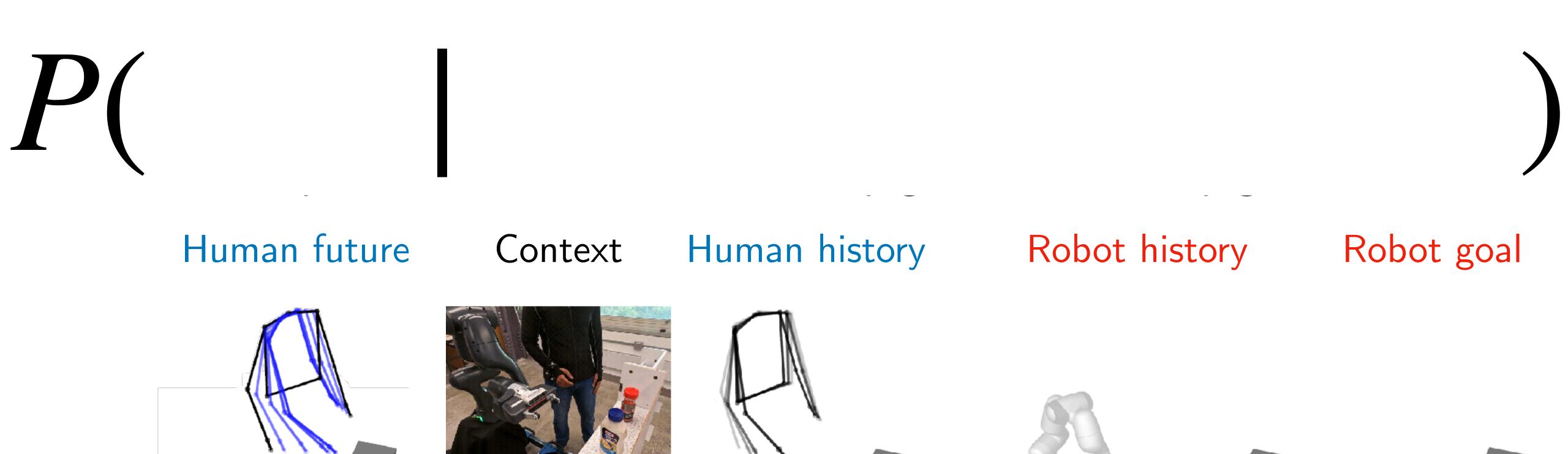
K. Kedia, P. Dan, A. Bhardwaj, S. Choudhury INTERACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions. *ICRA 2024.* (in submission)

K. Kedia, P. Dan, A. Bhardwaj, S. Choudhury. A Game-Theoretic Framework for Joint Forecasting and Planning. *IROS 2023.*

Goal: Predict human motion conditioned on robot goal

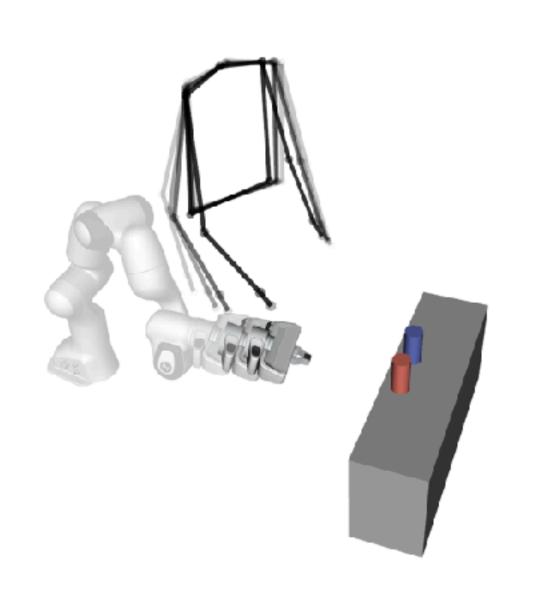


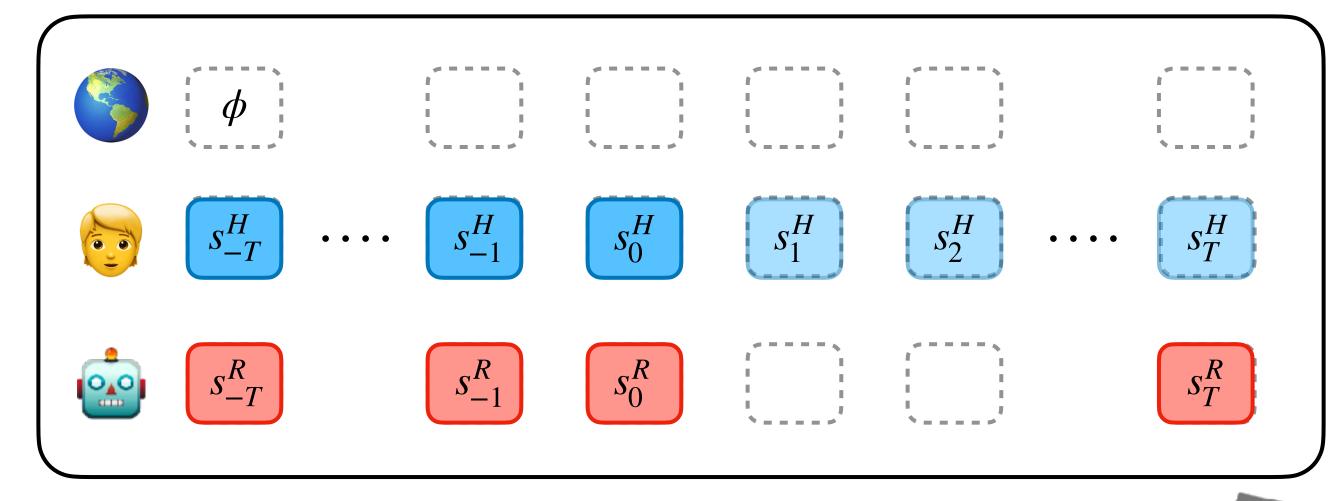
Goal: Predict human motion conditioned on robot goal

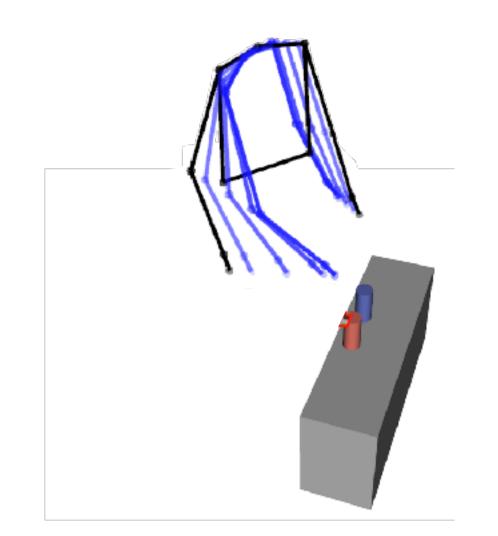


78

Framework: Sequence prediction

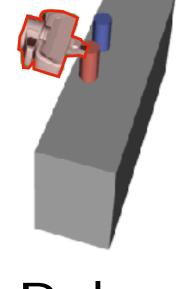






Human history Robot history

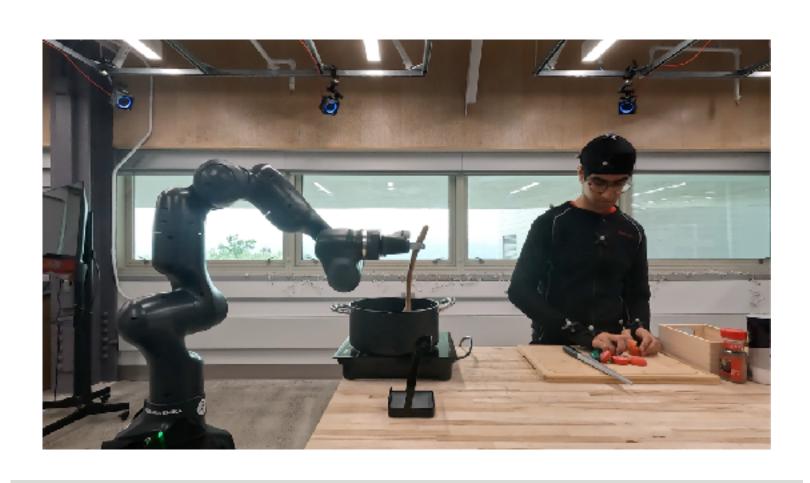
Transformer with masked attention

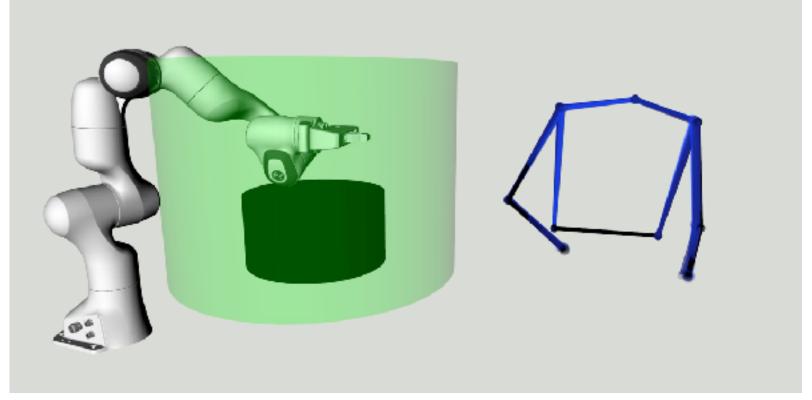


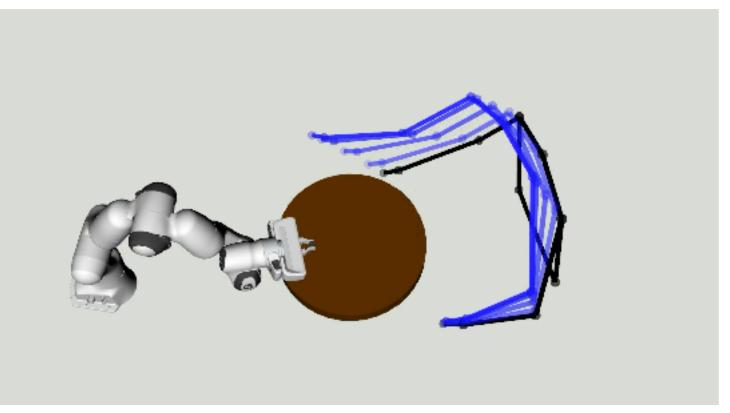
Robot Goal

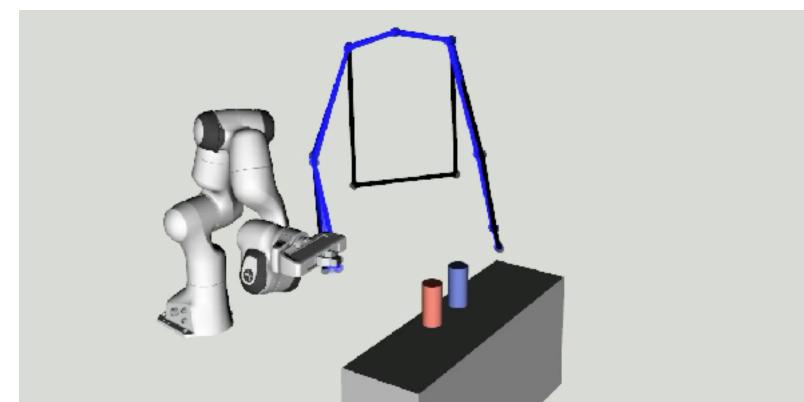
Human future

Results: Evaluate across different users and tasks







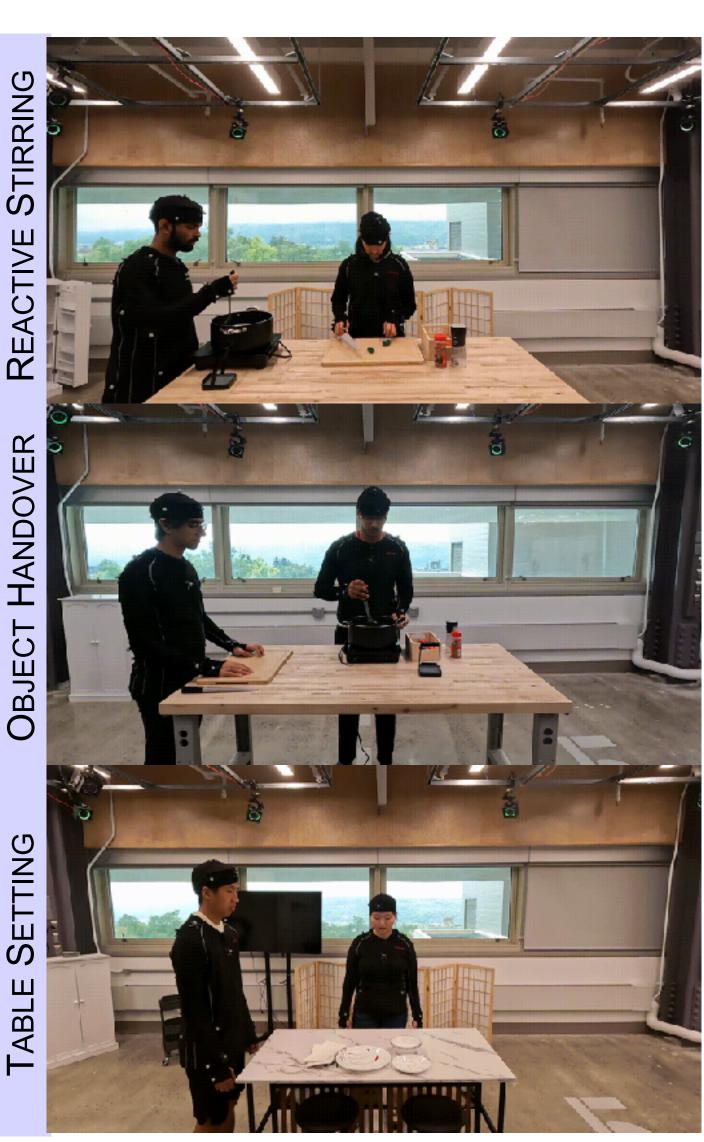


New Dataset: Collaborative Manipulation Dataset (CoMaD)

Over 4 hours of human motion

3 different home tasks

270 episodes of human-human interaction



HUMAN-HUMAN DATA

HUMAN-ROBOT DATA

30 minutes of paired human-robot Interaction

3 different home tasks

217 episodes of human-robot interaction

tl,dr

