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Problem: Insane number of papers out therell

Impossible for outsiders to
find any sort of scaffolding

Many of these papers
recycle old ideas
while butchering the insight

Hope: Sparse set of papers
that give you reach




Our Strategy

Goal: Engage with various frontiers of research
on robot decision making

Strategy: Equip you with a sparse “support vector' of papers
that gives you maximal reach on the problem

Expectation: For details and concrete implementation,
you should be able to look that up



The Problem



Real World, Real Problems

Robots can augment human capabilities to tackle these problems



Robots only really work in the CLOSED world

The Dream Reality



Generalize to variations of the OPEN world?




Machine learning's answer!

Big Data

Credit: Sergey Levine "Offline RL lecture”
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Hasn't quite been true so far robotics ...

On the quest for shared priors
w/ machine learning

# Tasks

Interact with the physical world to learn bottom-up commonsense

T

Credit: Andy Zeng .e. "how the world works'
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Hasn't quite been true so far robotics ...

On the quest for shared priors
w/ machine learning

Reality

Expectation
Data

Complexity in environment, embodiment, contact, etc.

\!

# Tasks

Interact with the physical world to learn bottom-up commonsense

T

_ ..e. "how the world works"
Credit: Andy Zeng
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But for today, let's pretend we can collect a ton of data

How can we learn “optimal’ from
large data collected by any policy?
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Goal: Offline Reinforcement Learning

. big dataset
= © from past
~ interaction train for
occasionally many epochs
get more data v

Credit: Sergey Levine "Offline RL lecture”



Different paradigms of RL

on-policy RL

; '
rollout data {(s;.a;.s.,1;)}

rollout(s)

Credit: Sergey Levine "Offline RL lecture”
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Different paradigms of RL

on-policy RL
rollout data {(s;.a;.sl,r;)}
[

off-policy RL

rollout data {(s;.a;.s..r;))

Credit: Sergey Levine "Offline RL lecture”
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Different paradigms of RL

on-policy RL

e offline reinforcement learning

. P A S . ..

{(s;,a;.8,,1;)}

/data collected ONCE\ == == == == =
\_ Wwith any policy / training phase

.
————

R~ Sl

R — ———— —

Credit: Sergey Levine "Offline RL lecture”
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Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems

Sergey Levine':?, Aviral Kumar!, George Tucker?, Justin Ful
1UC Berkeley, 2Google Research, Brain Team

Fun collab tutorial: https://colab.research.google.com/drive/
10JOYIAIOI9d1JjlutPY66 KmtPkwPCgEE ?usp=sharing
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https://colab.research.google.com/drive/1oJOYlAIOl9d1JjlutPY66KmfPkwPCgEE?usp=sharing
https://colab.research.google.com/drive/1oJOYlAIOl9d1JjlutPY66KmfPkwPCgEE?usp=sharing
https://colab.research.google.com/drive/1oJOYlAIOl9d1JjlutPY66KmfPkwPCgEE?usp=sharing

How is this even possible?

1. Find the “good stuff” in a dataset full of good and bad behaviors
2. Generalization: good behavior in one place may suggest good behavior in another place

3. “Stitching”: parts of good behaviors can be recombined

Credit: Sergey Levine "Offline RL lecture”



Does it work?

Sometimes*
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Large-scale Q-learning with continuous actions
(QT-Opt)

training buffers Bellman updaters

off-policy (s,a,s’,r)
on-policy (s, a,s’,r)

labeled (s,a, Q7 (s,a))

compute Qr(s,a) =

stored data from all

past experiments

r + maxy (Qg(s’,a’)

training threads

min[|Qe(s,a) — Qr(s, a)

0

u v
live data collection

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinfarcement Learning of Vision-
Based Robotic Manipulation Skills
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Optimal Insulin Dose

Offline reinforcement learning for safer blood glucose control in people with
type 1 diabetes

Harry Emerson **, Matthew Guy *»°, Ryan McConville

& University of Bristol, 1 Cathedral Square, Bristol, BS1 5TS, United Kingdom
b University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, Hampshire, United Kingdom

Table 2

The mean performance of the offline RL algorithms: BCQ, CQL and TD3-BC against the online RL approach
SAC-RNN and the control baseline PID. TD3-BC can be seen to significantly improve the proportion of TIR
when compared to the PID and the SAC-RNN algorithms. This is done so without any associated increase in
risk (reward) or TBR. Statistical significance was confirmed via a Friedman rank test for all glucose metrics
(p <0.05). f,  and § indicate an offline RL, online RL and classical control algorithm respectively, with the
best performing algorithm highlighted in bold.

Algorithm Reward TIR (%) TBR (%) CV (%) Failure (%)
BCQ' -41,034 + 1,060 65.8 + 0.6 1.0 = 0.1 35.1 = 0.4 0.00
CQL’ -45,259 + 1,071 56.2 + 0.5 0.1 + 0.1 30.3 = 0.3 0.00
TD3-BC’ -37,955 + 547 65.3 + 0.5 0.2 + 0.1 33.3 = 0.2 0.00
SAC-RNN* -93,480 + 71,826 34.9 + 3.1 4.1 + 0.7 29.6 + 1.3 13.3
PID? —-49,077 + 556 61.6 + 0.3 0.4 + 0.1 33.5 = 0.2 0.00
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Combustion control in power stations

DeepThermal: Combustion Optimization for
Thermal Power Generating Units Using Offline Reinforcement Learning

Xianyuan Zhan'*, Haoran Xu*>**, Yue Zhang?>, Xiangyu Zhu?*~, Honglei Yin?°, Yu Zheng”">*

I Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
2 JD iCity, JD Technology, Beijing, China
3 JD Intelligent Cities Research, Beijing, China
*+ Xidian University, Xi’an, China
{zhanxianyuan, ryanxhr, zhangyuezjx, zackxiangyu, yinhonglei93} @ gmail.com, msyuzheng @outlook.com

03 3 Combustion efficiency (%) 9 7 Combustion efficiency (%) 03 0 Combustion efficiency (%)
93.0 - M 92.4 1 W 92.7 1 W
92.7 - | ] | | | | | 92,1-l | | ' | ! ' ! 92.4

(a) 270 MW Experiment (b) 290MW Experiment (c) 310MW Experiment

Figure 4: Real-world experiments at CHN Energy Nanning Power Station



Goal-directed conversation

CHAI: A CHatbot Al for Task-Oriented
Dialogue with Offline Reinforcement Learning

Siddharth Verma Justin Fu Mengjiao Yang Sergey Levine
UC Berkeley UC Berkeley UC Berkeley UC Berkeley
Metric Fluency Coherency On-Topic Human-Likeness Total
CHAI-prop 431097 391x1.17 4.16x=0.99 3.47 £ 1.27 15.84 = 3.86
He et al. (2018) (Utility) | 3.56 £1.34 2.47 +1.39 3.09 = 1.40 2.13 =1.13 11.25 = 4.50
Lang. Model 406 =1.11 2.66 = 1.36 3.63 = 1.18 2.50 = 1.10 12.84 + 3.66

Table 2: Human evaluation scores comparing CHAI, He et al. (2018), and language model (higher i1s better).
Numbers are reported as means and standard deviations over 32 trials. CHAI scores the highest across all metrics.



We have already covered
a fundamental algorithm
in class that can learn
from offline data.

What is it?
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Q-learning

- dataset of transitions
(“replay buffer”) -

—— —

1 off-policy
‘' Q-learning

m(als) (e.g., e-greedy)

Q*(Sza at) — Q*(Sta az) 1 a(C(Sza az) + Vnzi/n Q*(Stq-la d’)— Q*(Sta Clt))



Q-learning

Q*(Sta Clt) — Q*(Sta az) T a(c(st, Clt) T }/Hll/n Q*(SH—l? Cl,)— Q>I<(St9 Clt)

Notice we are not approximating Q”(s,, a,)

We don't even care about 7

We can learn from any data!
20



Q-learning

Q*(sp a) = Q*(s, a) + alc(s, a) + ymin Q% (s, a)—0Q*(s,, )

.- 1. Each state-action pair is visited infinite times
Conditions for

2. lim K = 00
convergence ko0 Lik=0 K

3 limy oo K00 22 < 0,

27



Q-learning

For every (St, da, C, S, +1)

Q*(Sta Clt) — Q*(Sta Clt) + a(c(st, Clt) + }/mlfIl Q*(Sﬂ-la Cl,)— Q*(Sta Clt)

What happens 1.

|

when this is 2. limy_ 0 Y52 o it = 00
9 :
not met 3. limy 0 Y50 02 < 00,

28






Consider the following MDP




Let's say | collected some data from the MDP

50% 50%



What would happen if | did Q-learning with this data?

50% 50%



Think-Pair-Share!

Think (30 sec): What would happen if we did

Q-learning with this data? ldeas on how to fix
it

Pair: Find a partner

Share (45 sec): Partners exchange
ideas

33



Credit: Sergey Levine "Offline RL lecture”

Why is offline RL hard?

log scale (massive overestimation)

amount of data /
Hdlf(‘h(‘(‘tah-\\ AverageReturn HalfCheetah-v2: log(Q)

1000 30

— n=1000 —_— n=1000
750 -
. n=10000 95 n=10000
500 - — n=100000 n= 100000
— n=1000000 o0 1. — n=1000000
25() A -
0 1 15 : :
—25() 1
10) 4 :
—500)
_‘l")“
—1000 - - : - 0+ — — ™ ™— )
0.0K 02K 04K 06K 08K 10K 00K 02K 04K 06K 08K 10K

TrainSteps TrainSteps
how well it does how well it thinks
it does (Q-values)

13
Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlPS ‘19



Credit: Aviral Kumar “Conservative Q learning”

lllustration of Distribution Shift

More coverage

e Even on gridworlds, the choice
of training distribution matters
for standard Q-learning
algorithms.

Uniform e

$ Replay Buffer Prioritized @

® On-Policy

® Random Policy

Returns

e \We might only wonder how
oo this will affect the performance
it of offline RL algorithms in

practice.

Entropy

Figure from Diagnosing Bottlenecks in Deep Q-learning Algorithms. K.*, Fu*, Levine. ICML 2019
35



Credit: Sergey Levine "Offline RL lecture”

Why is offline RL hard?

Fundamental problem: counterfactual queries

Training data What the policy wants to do
Is this good? Bad?
|:' ':. How .do we kn.O\{v if
| | we didn’t see it in
the data?

Online RL algorithms don’t have to handle this, because they can
simply try this action and see what happens

Offline RL methods must somehow account for these unseen
(“out-of-distribution”) actions, ideally in a safe way

...while still making use of generalization to come up with behaviors
that are better than the best thing seen in the data!

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. 20



Why not just do imitation learning?’

37



Now consider this MDP

What is the optimal policy? What would imitation learning do?

38



Pessimism



Pessimism as a policy constraint

Don't deviate too much from the data collecting policy

Q(s,a) < r(s,a) + Earr . [Q(s",a")]

|
(
|
‘I

Thew (Q[S) = arg max Earr(als)|@(s,a)] S.t.LD:L(WHWg) <e |

Choose any divergence, e.g. KL

Credit: Sergey Levine “Offline RL lecture”
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TD3+BC: Most simple and effective offline RL!

A Minimalist Approach to
Offline Reinforcement Learning

Scott Fujimoto':? Shixiang Shane Gu?
IMila, McGill University
2Google Research, Brain Team
scott.fujimoto@mail.mcgill.ca

T = argmaxli g q)~D —)\Q(S,W(S)) — (m(s) — a)z- )

T

41



BC BRAC-p AWAC CQL Fisher-BRC TD3+BC
CEJ HalfCheetah 2.0 1+0.1 23.5 2.2 21.7 0.9 322 +2.2 10.2 +1.3
g Hopper 9.5 +0.1 11.1 9.6 10.7 +0.1 11.4 +£0.2 11.0 +0.1
&  Walker2d 1.2 +0.2 0.8 5.1 2.7 +1.2 0.6 0.6 14+1.6
g HalfCheetah 36.6 +0.6 44 .0 374 372 +0.3 41.3 +0.5 42.8 +0.3
3 Hopper 30.0 +0.5 31.2 720  442+108 994 +0.4 99.5 +1.0
= Walker2d 11.4 +6.3 72.7 30.1  57.5 483 79.5 +1.0 79.7 +1.8

g > HalfCheetah 34.7 +1.8 45.6 - 419 +1.1 43.3 +0.9 43.3 +0.5

3 's« Hopper 19.7 +5.9 0.7 - 286409 35.6 +2.5 31.4 4+3.0

= & Walker2d 83 +1.5 0.3 - 158426 42.6 +7.0 25.2 +5.1

g E HalfCheetah 67.6 +-13.2 43 .8 36.8 27.1 3.9 96.1 +9.5 070 +4.4

3 S Hopper 89.6 +27.6 1.1 809 1114 -+1.2 90.6 +43.3  112.2+0.2

="M Walker2d 12.0 +5.8 0.3 427  68.1-+13.1 103.6+4.6 101.1 +9.3
g HalfCheetah 105.2+1.7 3.8 785 824-+74  106.8 +3.0 105.7 +1.9
a" Hopper 111.5 £+1.3 6.6 85.2 111.2 2.1 112.3 0.2 112.2 0.2
= Walker2d 56.0 +24.9 02 570 103.8-+76 79.9 4324  105.7 +2.7

Total 5905.3 +91.5 284.1 - 7643 +61.5 974.6-+108.3 9793 +334

Table 2: Average normalized score over the final 10 evaluations and 5 seeds. The highest performing scores
are highlighted. CQL and Fisher-BRC are re-run using author-provided implementations to ensure an identical

evaluation process, while BRAC and AWAC use previously reported results. -

- captures the standard deviation

over seeds. TD3+BC achieves effectively the same performances as the state-of-the-art Fisher-BRC, despite
being much simpler to implement and tune and more than halving the computation cost.
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Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with
Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu!, Justin Fu', George Tucker?, Xinlei Pan', Eli Bronstein!, Rebecca Roelofs?, Benjamin Sapp’,
Brandyn White!, Aleksandra Faust®, Shimon Whiteson', Dragomir Anguelov!, Sergey Levine®*

Demonstrations Rewards more
more effective effective

'

Tasks/scenarios sorted by frequency (descending order)

<

# of demos
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Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with
Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu!, Justin Fu!, George Tucker?, Xinlei Pan', Eli Bronstein®, Rebecca Roelofs?, Benjamin Sapp?,
Brandyn White', Aleksandra Faust?, Shimon Whiteson', Dragomir Anguelov', Sergey Levine®*

https://waymo.com /research /imitation-is-not-enough-robustifying-imitation-with-reinforcement-learning/
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-

But choosing a
divergence seems
arbitrary?’

7 Q(s,a) < r(s,a) + Farur. [Q(s',a")]

Wnew(a‘s) — arglnax Ea~w(a|s) [Q(57 a)] S.1. ‘;

45



Another notion of pessimism

Can we make the Q-value itselt pessimistic
on actions it has not seen?



Conservative Q-Learning (CQL) =

Conservative Q-Learning
for Offline Reinforcement Learning

Aviral Kumar', Aurick Zhou', George Tucker”, Sergey Levine':*
1UC Berkeley, “Google Research, Brain Team
aviralk@berkeley.edu

47



A

‘. iy . SlIl . Offllne dat a»D

_\__\ /__,_‘—:':/.’: —
——— . ’4;:;’:—)"”
—— /

A

2 Optlml e pohiey 0" :7m arg max Q" _QD(”T@ ’”B)

w

Approach 2: Directly modify the Q-function to be pessimistic

e Key idea behind CQL: Learn lower-bounds on Q-values

CQL Algorithm:
1. Learn QCQL using offline data D.

___2. Optimize pohcy w.r.t. QCQL . 7 < argmax [E, [QEQL]

‘s
Credit: Aviral Kumar “Conservative Q learning”



Many ways to construct a conservative Q value

Original CQL paper proposed one such way

Recent work has come up with more unified frameworks

49



Adversarially Trained Actor Critic (ATACL)

Adversarially Trained Actor Critic for Offline Reinforcement Learning

Ching-An Cheng ! Tengyang Xie ? Nan Jiang? Alekh Agarwal’

50






Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Kev ldea: Relative Pessimism

* Optimize for the worst-case performance compared with the behavior policy L.

7 € arg max] Lower bound of J(7) — J ()
mell

Lower bound < J(m) — J (1) Lower bound &~ J(m) — J (1)

< S

S0

Data Data



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Kev ldea: Relative Pessimism

* Optimize for the best worst-case performance compared with the behavior policy L.

7 € arg max] Lower bound of J(7) — J ()
mell

ATAC frames this problem as a Stackelberg game (i.e., bilevel optimization)



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

* ATAC optimizes for relative pessimism via solving a Stackelberg game

Leader (policy) T C arg maxﬁu (7T, fw)
mell
Follower (critic)( s.t.}) f™ € argmin L, (7, ) + BE,. (7, f)

fe}— Bilinear Payoffs of

. . Bellman error
relative pessimism

Trade-off conservatism vs. generalization

Lo(m, f) = Eulf(s,m) = f(s,a)
En(m, ) =EL[((f = T f)(s,a)7]




Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

* ATAC optimizes for relative pessimism via solving a Stackelberg game

Leader (policy) T € arg ma

L, (m, ™)
mell

Follower (critic) @ fﬁ € arg min ﬁu (7T, f) - 55# (777 f)

JE€F  Bilinear Payoffs of
Leader plays first relative pessimism

| Bellman error
then the Follower

Trade-off conservatism vs. generalization

Robust Policy Improvement Property
Forall B = 0, the ATAC policy is always no worse than the behavior policy that collected the data.

*C,u(ﬂ-v f) = ﬂ,u[f(svﬂ-) — f(Sva)]
gﬂ(ﬂ-a f) = ﬂu[((f — Tﬁf)(saa))2]°




Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Let's look at a simple example

Let's say the time horizon T=1

(Multi-armed bandit!)

actions

data
behavior policy u

50



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Let's look at a simple example

Let's say the time horizon T=1

(Multi-armed bandit!)

actions

data
behavior policy u

57



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Let's look at a simple example

actions

data

behavior policy u

58



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

ATAC

n° € argmax L, (m, f7)

mell

s.t.| fTle argmin L, (7, f) + BEL(T, f)
feF

hypothesis f(s,-) with small SE,

actions

data

behavior policy u

59



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

ATAC

- € argmax L, (m, f7)

mell

s.t. fT eargmin L, (m, f)+ BEL(T, f)
feF

value difference hypothesis f(s,-) — f(s, i)

actions

data
What is the solution to the

behavior policy 1 Stackelberg game?



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

ATAC

- € argmax L, (m, f7)
mell

s.t. fT eargmin L, (m, f)+ BEL(T, f)
feF

value difference hypothesis f(s,-) — f(s, i)
actions

inactive value difference hypothesis

s decision policy 7

data

behavior policy 1 Not the behavior policy in this case...



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

ATAC

- € argmax L, (m, f7)
mell

s.t. fT eargmin L, (m, f)+ BEL(T, f)
feF

value difference hypothesis f(s,-) — f(s, i)
actions

inactive value difference hypothesis

s decision policy 7
data
Not the policy that maximizes

behavior policy u . .
a single hypothesis...



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

ATAC

E argmax L, (m, f™)
mell

s.t. fT eargmin L, (m, f)+ BEL(T, f)
feF

LA

actions

value difference hypothesis f(s,-) — f(s, u)

inactive value difference hypothesis

s decision policy 7
data
The optimal decision balances

behavior policy u .
multiple hypotheses



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

A Stackelberg Game for Offline RL

Leader = Actor = Conditional generator
A .. . . .
e ATAC Follower = Critic = Discriminator

Offline RL " cargmax L, (m, f")

mell
L. s.t. fT eargmin L, (m, f)+ BEL(T, f)

JeF

f too small -~

ATAC provides a bridge between offline RL
and imitation learning with IPM via the lens
of generative adversarial networks (GAN)

Imitation

«amine Offline RL + Relative Pessimism
= IL + Bellman Reqularization




Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Solving the Stackelberg Game

No-Regret + Best
Response Scheme

losses are approximated by samples

fk ~ argminfe}- »C,u(ﬂ-ka f) + Bg,u,(ﬂ-ka f)

‘ small policy update

Tr+1 = NoRegret(my, fi)

J

Repeat for
K iterations

Output uniform mixture of policies (theory) or the last policy (practice)
In practice, the above is implemented by two-timescale SGD updates

=)

A
|

A

A

d

.

Aoy > 2
’“--

A.

behavior policy == = active objective

mmm= decision

Inactive objective



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

ATAC Theory (Informal)

Learning Optimality

Assume F satisfies realizability and completeness.

Given dataset D s.t. |D| = N. With 3 = ©(N?/3). Then Vr € II,
J(T‘-) — J(ﬁ-) S O ((1_7;\]1/3) + Egelrleranliza,tion(-F.a T, D)

average Bellman error of f; on
the distribution of

With a well tuned 5, ATAC can compete with any policy within the data coverage.



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

ATAC Theory (Informal)

Robust Policy Improvement

Assume F satisfies realizability without the need of completeness.

It IS H7 then J(:u) - J(ﬁ-) <0 ((1—7;]\71/2 | (1—B’Y)N)

faster rate

ATAC always improves over the behavior policy so long as 5 = o(N).



Credit: Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Experimental Results

ATAC’s robustness property enables online HP selection. We
can gradually increase [ to tune its performance without

Robust Policy Improvement
breaking the baseline performance.

1000 T Relative Pess. (ATAC) 100 —_—
- Absoluate Pess.
c 75| = Behavior Policy c 757
o =
g 50 th) 50

25 : i— 25 |
0 0

102 10°* 10° 10! 101 101
Beta Beta
100 100
= 75 = 75
2 D

9 50 9 50
25- 25

0 101 101 0 1071 101

Beta

Beta




Credit:

Experimental Results

Ching-An Cheng “Adversarially Trained Actor Critic for Offline Reinforcement Learning” ICML 2022

Behavior CQL COMBO TD3BC IQL BC
halfcheetah-rand -0.1 35.4 38.8 10.2 . 2.1
walker2d-rand 0.0 7.0 7.0 1.4 2 1.6
hopper-rand 1.2 10.8 17.9 11.0 - 9.8
halfcheetah-med 40.6 G4 54.2 42.8 474  36.1
walker2d-med 62.0 74.5 75.5 79.7 78.3 6.6
hopper-med 44.2 86.6 94.9 99.5 66.3 29.0
halfcheetah-med-replay 27.1 46.2 55.1 43.3 44.2 38.4
walker2d-med-replay 14.8 32.6 56.0 25.2 73.9 11.3
hopper-med-replay 14.9 48.6 73.1 314 94.7 11.8
halfcheetah-med-exp 64.3 62.4 90.0 97.9 86.7 35.8
walker2d-med-exp 82.6 98.7 96.1 101.1 109.6 64
hopper-med-exp 64.7 111.0 111.1 112.2 915 1119
pen-human 207.8 37.5 : . 71.5 34.4
hammer-human 25.4 4.4 . . 1.4 1.5
door-human 28.6 9.9 . 2 4.3 0.5
relocate-human 86.1 0.2 2 . 0.1 0.0
pen-cloned 107.7 39.2 : 2 37.3 56.9
hammer-cloned 8.1 2.1 2 . 2.1 0.8
door-cloned 12.1 0.4 2 . 1.6 -0.1
relocate-cloned 28.7 -0.1 2 . -0.2 -0.1
pen-exp 105.7 107.0 . - - 85.1
hammer-exp 96.3 86.7 - - - 125.6
door-exp 100.5 101.5 2 . - 34.9
relocate-exp 101.6 95.0 . : : 101.3

ATAC achieves SOTA performance, outperforming
baseline algorithms in most datasets

Datasets where ATAC is the
best performing algorithm,
with 9% improvement

(median) compared with the
best baseline algorithm.



