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We know how to make a RL block!

Your favorite
RL algorithm




But how do we design reward function??

Your favorite
RL algorithm
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Designing R(s,a) for self-driving

Your favorite
RL algorithm

Let's say we want a reward function that matches human like driving
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But humans have a lot of variance in their motion!

Is there a reward function for which all these motions are optimal?



How do we imitate ‘real
experts who may be
noisy / suboptimal?




Expert demonstrations are
coming from some (unknown)

distribution ..
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The Distribution Matching Problem

P expert(éh) /\ / P 6’(5)

(Unknown) expert distribution Learn distribution over trajectories

L earner can also
All we see are

expert samples

generate samples

What loss - ']
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What loss should we use?

What we actually care about is matching Performance Difference
J() = J(7™)
Eepye¢(©) = Eeop, o)

But we don't know the costs c(.)!!



What divergence do we care about?

What we actually care about is matching Performance Difference
J() = J(7™)
Eepye¢(©) = Eeop, o)

But we don't know the costs c(.)

Costs are just weighted combination of features. What it we just
matched all the expected features?
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Proposal: Match cost features!

P expert(éh) /\ / P 6’(5)

(Unknown) expert distribution Learn distribution over trajectories

L earner can also
All we see are

expert samples

ya e

generate samples
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Proposal: Match cost features!

Pexpm(é‘h)/\

(Unknown) expert distribution

All we see are
expert samples
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Learn distribution over trajectories
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L earner can also
generate samples
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Moment Matching Constraint

Find Py(&)

Eeop ) JS) = Eaopy J(S ) Ve F




What are some features for this task?

Moments of -
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s there a unique solution
to the moment matching
problem??
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Principle of Maximum Entropy to the rescuel

Information Theory and Statistical Mechanics

E. T. JAYNES
Department of Physics, Stanford University, Stanford, California

(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate., It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

1. INTRODUCTION

THE recent appearance of a very comprehensive
survey' of past attempts to justify the methods
of statistical mechanics in terms of mechanics, classical
or quantum, has heiped greatly, and at a very opportune
time, to emphasize the unsolved problems in this field.

! D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available,

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a prior: probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
hetween its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.

Although the subject has been under development for
many years, we still do not have a complete and
satisfactory theory, in the sense that there is no line
of argument proceeding from the laws of microscopic
mechanics to macroscopic phenomena, that is generally
regarded by physicists as convincing in all respects.
Such an argument should (a) be free from objection on
mathematical grounds, (b) involve no additional arbi-
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The loaded die problem



What is the measure of uncertainty?

H(X) = — Z P(X)log P(X)
X

1. Decreasing in P(X), such that if P(X;) < P(X3), then h(P(X1)) > h(P(X2)).

2. Independent variables add, such that if X and Y are independent, then H(P(X,Y)) = H(P(X)) +
H(P(Y)).

These are only satisfied for —log(-). Think of it as a “surprise” function.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION
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Maximum Entropy Moment Matching

ind Pi©) max H(Py(&))
v

Eeop ) JS) = Eaopy J(S ) Ve F




| et's derivel
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Animation from Sodhi et al. 2021




Animation from Sodhi et al. 2021
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Animation from Sodhi et al. 2021
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Co(S)

Push down
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Animation from Sodhi et al. 2021
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Animation from Sodhi et al. 2021
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Okay...

But how do we sample
from

1

G ~ 7 CXP (_Ce(f))
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| et’'s derive soft value iteration



Soft Actor Critic

Soft actor-critic

- 1. Q-function update @\
| Update Q-function to evaluate current policy: '

Q(Sa a) — T(Sa a) + 4‘S""Ps, a’'~m [Q(S’a a,)_ 1og7r(a’\s’)]

This converges to Q™ AN

update messages

2. Update policy
Update the policy with gradient of information projection: /
1

7@, ) OO
In practice, only take one gradient step on this objective @‘@

Tnew — arg mi,nDKL (ﬂ"( ) |S)
s

3. Interact with the world, collect more data

Haarnoja, Zhou, Hartikainen, Tucker, Ha, Tan, Kumar, Zhu, Gupta, Abbeel, L. Soft Actor-Critic Algorithms and Applications. ‘18
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fit variational distribution

Credit S.Levine.
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Max Entropy Inverse Reinforcement Learning

max mgn Eo omn L Co(Spa)] =B o C (0] —PH (1)
. Te

o T -~ 7

Entropy
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The Entropy Regularized Game

ImMax IIllIl [ESt’atNﬂH[ (Sta at)] o J:st*,at*rvn'*[ (5)] _ﬁH(ﬂH)

0 LR ::.
o T ~ 7 1 Entropy
fori=1,....N
g =argmink, _ [C,(s,a)] — pH(7)

p" = +nlVgE, .. [C)(spa)] = VoE g ps i C1(E)]]



Inverse Reinforcement Learning
without Reinforcement Learning

Gokul Swamy

(with Sanjiban Choudhury, Drew Bagnell, and Steven Wu)
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Inverse Reinforcement Learning for Imitation

G=nr
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Robust to
compounding
errors.

/O
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RL makes IRL Inefficient



RL makes IRL Inefficient



¢+~ Insight: We can reset the learner to states

from the expert demonstrations to reduce
unnecessary exploration.



Speeding up IRL with Expert Resets

Key Idea: Use Dynamic
Programming

T~ O(T?)
Complexity!




#° Contribution: Poly-time Algorithms for IRL

Inverse RL MMDP
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IQM of ()
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Expert Resets Speed Up IRL

antmaze-large-play-v2, py.empre = 0.0 hHOPPerBuuetEnV'VO/ Ptremble = 0.01
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ER(BR), o« = 0.5
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