Planning with Inaccurate Models

Sanjiban Choudhury

Elephant in the room: Why can't we just learn a model?

"Just pretend I'm not here..."

Model Based Reinforcement Learning

Learn Model

Plan with Learned Model

Why Model?

Models are *necessary*

Robots can't just try out random actions in the world!

Models are *necessary*

We invested heavily in simulators for helicopters and self-driving to verify behaviors before deployment

Models work in *theory*

Alekh Agarwal Microsoft alekha@microsoft.com

> Lin F. Yang University of California, Los Angeles linyang@ee.ucla.edu

Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal

> Sham Kakade University of Washington sham@cs.washington.edu

April 7, 2020

Models work in *practice*

Hafner et al. 2023

Learning Models.

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

Georgia Tech Auto Rally (Byron Boots lab)

Think-Pair-Share

Think (30 sec): What features / architecture would you use to learn a model for rally car? What planner would you use?

Pair: Find a partner

Learn Model

Share (45 sec): Partners exchange ideas

Part 1: System Identification

Collect data of rally car $(x_1, u_1, x_2, u_2, ...)$ $\mathbf{x}_{t+1} = \mathbf{F}(\mathbf{x}_t, \mathbf{u}_t) =$

Information Theoretic MPC for Model-Based Reinforcement Learning

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and Evangelos A. Theodorou

Learn Model

- 1.Sample and evaluate trajectories
- 2.Compute control update
- 3.Execute first control in sequence, receive state feedback
- 4.Repeat, using the un-executed portion of the previous control sequence to warm-start the trajectory

Part 2: Planning

Information Theoretic MPC for Model-Based Reinforcement Learning

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and Evangelos A. Theodorou

Plan with Learned Model

Cross Entropy like approach!

14

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

Question: How do you collect data for learning model?

Another Example: Helicopter Aerobatics

A nose-in funnel!

(Super cool work by Pieter Abeel et al. <u>https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html</u>)

Part 1: System Identification

Learn a linear model around reference

$$\Delta x_{t+1} = A_t x_t + B_t u_t$$

Part 2: Planning

Plan with Learned Model

Use LQR with learnt models

How do we collect data to train our model?

Train a model on state actions visited by the expert!

Strategy

Model Based RL v1.0

If I perfectly fit a model (i.e. training error zero), this should work, right?

Experts picks action a to go to the goal

Model agrees with world, i.e. train error zero!

What if the model is optimistic? Predicts a short cut to the goal by taking action a'

In reality the shortcut ends in death ...

Training on Expert Data

(From Ross and Bagnell, 2012)

27

Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

Strategy

Improve model where policy goes

Collect more data along current policy's trajectory

Don't we know an algorithm that does this?

DAGGER for Model-based RL!!

Model Based RL v2.0

If I perfectly fit a model (i.e. training error zero), this should work, right?

can't get to trophy, but can get to \$1

Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

Train a model on state actions visited by both the expert and the learner!

Strategy

Model Learning with Planner in Loop (Ross & Bagnell, 2012)

Model learning on both expert and learner data works!

(From Ross & Bagnell, 2012)

How do we derive this strategy?

Theoretical Foundations for Model Based RL

Agnostic System Identification for Model-Based Reinforcement Learning

Stéphane Ross

Robotics Institute, Carnegie Mellon University, PA USA

J. Andrew Bagnell

Robotics Institute, Carnegie Mellon University, PA USA

STEPHANEROSS@CMU.EDU

DBAGNELL@RI.CMU.EDU

Lemma: Performance Difference via Planning in Model

 $J_{M*}(\pi^*) - J_{M*}(\pi)$

Planning error

$\leq \mathbb{E}_{s_0} \left| V_{\hat{M}}^{\hat{\pi}}(s_0) - V_{\hat{M}}^{\pi^*}(s_0) \right| + TV_{\max} \mathbb{E}_{s,a \sim \pi^*} \left| \left| \hat{M}(s,a) - M^*(s,a) \right| \right|$ Model fit on expert states

 $+ TV_{\max} \mathbb{E}_{s,a \sim \hat{\pi}} \left\| \hat{M}(s,a) - M^*(s,a) \right\|$ Model fit on policy states

The Challenge.

needle in an exponential haystack

Planning is like finding a

How much planning do we need when learning models?

Learnt model has hidden portals!

Policy at iteration 1

Plan for exp(T)to find policy!

Policy at iteration 2

Plan for exp(T)to find policy!

After many iterations

20

Q

Exponential Complexity of Model Learning

Every iteration, planning is exp(T) computation

Repeat for many iterations to eliminate all portals

Key Insight.

Just do better than expert.

Be Lazy.

Don't compute optimal plan.

The Virtues of Laziness in Model-based RL: A Unified Objective and Algorithms

ICML 2023!

Anirudh Vemula¹ Yuda Song² Aarti Singh² J. Andrew Bagnell¹² Sanjiban Choudhury³

How do we turn planning $Exp(T) \rightarrow Poly(T) ?$

How do we turn planning $Exp(T) \rightarrow Poly(T) ?$ Restart from expert states

Policy Search via Dynamic Programming (PSDP) (Bagnell, et al. 2003)

Iterate from T-1 and go back in time

Solve for best policy π_t , given future policies $\pi_{t+1}, \pi_{t+2}, \cdots \pi_T$

 $\pi_{t} = \arg\max r(s_{t}^{*}, \pi(s_{t}^{*})) + \mathbb{E}_{s_{t+1}} V^{\pi_{t+1}:T}(s_{t+1})$

At each time t, restart from expert state s_t^*

Let's say we have expert states

 \odot

What is the best policy π_{T-1} ?

What is the best policy π_{T-2} , given π_{T-1} ?

What is the best policy π_{T-2} , given π_{T-1} ?
Policy Search via Dynamic Programming (PSDP)

What is the best policy π_{T-3} , given π_{T-2} , π_{T-1} ?

PSDP is Lazy

Instead of searching all states to find the best policy

Just do better on states the expert visits

Is being lazy a good idea for model learning?

Final Model + Policy

Note since the planner search the whole tree, it may not remove all the hidden portals

But can we prove that lazy is good for model learning?

A New Lemma!

Lemma: Performance Difference via Advantage in Model

 $J_{M*}(\pi^*) - J_{M*}(\pi)$

 $\leq \mathbb{E}_{s^* \sim \pi^*} \left[A^{\pi}(s^*, a^*) \right]$ Advantage of expert in model

$+ TV_{\max} \mathbb{E}_{s,a \sim \pi^*} || \hat{M}(s,a) - M(s,a) ||$ Model fit on expert states

+ $TV_{\max} \mathbb{E}_{s,a \sim \pi} | \hat{M}(s,a) - M(s,a) |$ Model fit on policy states

LAMPS finds a better policy with fewer samples + fewer computation

(LQR on expert traj)

LAMPS converges faster than both SysID and MBPO

LAMPS makes better use of Expert Data

10000 samples

50000 samples

Recap

Another challenge.

Mismatched Objectives

Fitting model with L2 loss is mismatched with how good the resulting policy is

Learnt Model A

Gets everything right but 1

Which model has lower loss? Which one do we prefer?

Can we have change the loss for how we fit the model?

Our new lemma actually prescribes matching values!

 $J_{M*}(\pi^*) - J_{M*}(\pi)$

+ $T\mathbb{E}_{\underline{s,a\sim\pi^*}}\left|E_{\underline{s'\sim M}}V^{\hat{\pi}}(\underline{s'}) - E_{\underline{s'\sim M^*}}V^{\hat{\pi}}(\underline{s''})\right|$ $= \mathbb{E}_{s^* \sim \pi^*} \left| A^{\hat{\pi}}(s^*, a^*) \right|$ Advantage of expert Value matching on expert states in model

 $+ T \mathbb{E}_{s,a \sim \hat{\pi}} \left[E_{s' \sim \hat{M}} V^{\hat{\pi}}(s') - E_{s'' \sim M^*} V^{\hat{\pi}}(s'') \right]$

Value matching on learner states

LAMPS with Moment Matching (LAMPS-MM) Collect Fit Lazy Expert Data Planner Model Value Loss Rollout Policy

New Lemma: Performance Difference via Advantage in Model

Solution 1: Be lazy, restart from expert states

