## Policy Search and Black-Box Policy Optimization

Sanjiban Choudhury





## CRISIS !!!

Errors in neural network get amplified by dynamic programming (Bootstrapping)



QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation



#### To hell with Value Estimates!



#### Trust ONLY actual Returns

4

## What if we focused on finding good policies ... ?





#### Sometimes a policy is waaaaaay simpler than the value

#### Car-on-the-Hill





The Value!



#### Can we just focus on finding a good policy?





Learn a mapping from states to actions



Roll-out policies in the real-world to estimate value





## The Game of Tetris





#### What's a good policy representation for Tetris?



 $\pi_{\theta} : S_t \to a_t$ 



State  $(S_t)$ 

#### $(4 \text{ rotations})^*(10 \text{ slots})$ - (6 impossible poses) = 34





Action  $(a_t)$ 









#### Think-Pair-Share

#### Think (30 sec): Ideas for how to represent policy for tetris?

#### Pair: Find a partner

#### Share (45 sec): Partners exchange ideas



11

### Some inspiration for Tetris policy

as reported by Fahey (2003). Pierre Dellacherie, a self and tuned the weights by trial and error.

Until 2008, the best artificial Tetris player was handcrafted, declared average Tetris player, identified six simple features

12

#### Dellacherie Features



A well is a succession of empty cells and the cells to the left and right are occupied





#### $-4 \times holes - cumulative wells$ - row transitions - column transitions -landing height + eroded cells

#### A magic formula ?!?

14

 $-4 \times holes - cumulative wells$ -landing height + eroded cells

This linear evaluation function cleared an average of 660,000 lines on the full grid ... ... In the simplified implementation used by the approaches discussed earlier, the games would have continued further, until every placement would overflow the grid. Therefore, this report underrates this simple linear rule compared to other algorithms.

#### A magic formula ?!?

## $-row\ transitions - column\ transitions$





## Can YOU do better than Dellacherie?



### The Goal of Policy Optimization

#### $\pi_{\theta}(s) = \arg\min_{\sigma} \theta^T f(s, \alpha)$ $\boldsymbol{\mathcal{A}}$

# $\min_{\theta} J(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\pi_{\theta}} c(s_t, a_t)$

#Think of c(s,a) as -num\_rows cleared

#Think of f(s,a) being dellacherie features



17



#### Cross Entropy

### If you were ever stranded on an island ...



Credit: https:// blog.otoro.net/ 2017/10/29/visualevolution-strategies/

Green: Mean of distribution

Blue: Samples from distribution

Red: Best solution found so far



#### Let's formalize!



 $\mathcal{D}^{\theta}$ 

#### TNIT



## The Cross Entropy Algorithm $\int_{I_{NT}} D_{\theta}$



SAMPLE & TIMES toget & EB: Zk i Jie,





SAMPLE & TIMES toget & EB. 2k 10 get & EB. 2k juin

- FVALUATE EACH O:
- · EXECUTE POLICY MULTIPLE TIMES





EVALUATE EACH O:

· EXECUTE POLICY MULTIPLE TIMES

100

100





FVALUATE EACH O:

· EXECUTE POLICY MULTIPLE TIMES

100

100

FIND TOP'E' ELITES (e.g. 25%)





FVALUATE EACH O:

· EXECUTE POLICY MULTIPLE TIMES

100

100

100

FIND TOP'E' ELITES (e.g. 25%)

8

FIT A NEW DISTRIBUTION



#### Cross Entropy for Gaussian

#### Gaussian Distribution $D_{A} := \mathcal{N}(\mu, \Sigma)$



Variance



 $\Sigma^{t} = \frac{1}{2} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2}$ i=1

C



István Szita szityu@eotvos.elte.hu András Lőrincz

andras.lorincz@elte.hu Department of Information Systems, Eötvös Loránd University, Budapest, Hungary H-1117

The cross-entropy method is an efficient and general optimization algorithm. However, its applicability in reinforcement learning (RL) seems to be limited because it often converges to suboptimal policies. We apply noise for preventing early convergence of the cross-entropy method, using Tetris, a computer game, for demonstration. The resulting policy outperforms previous RL algorithms by almost two orders of magnitude.

#### Does it work?

Learning Tetris Using the Noisy Cross-Entropy Method



|                               | Algorithm                      | GRID SIZE      | LINES CLEARED              | FEATURE SET USED         |
|-------------------------------|--------------------------------|----------------|----------------------------|--------------------------|
| TSITSIKLIS & VAN ROY (1996)   | APPROXIMATE VALUE<br>ITERATION | 16 	imes 10    | 30                         | Holes and pile<br>height |
| BERTSEKAS & TSITSIKLIS (1996) | $\lambda$ - PI                 | 19	imes10      | 2,800                      | BERTSEKAS                |
| LAGOUDAKIS ET AL. (2002)      | LEAST-SQUARES PI               | 20	imes10      | $\approx 2,000$            | LAGOUDAKIS               |
| Kakade (2002)                 | NATURAL POLICY<br>GRADIENT     | 20 	imes 10    | ≈ 5,000                    | Bertsekas                |
| Dellacherie                   |                                |                |                            |                          |
| [REPORTED BY FAHEY (2003)]    | HAND TUNED                     | 20	imes10      | 660,000                    | DELLACHERIE              |
| RAMON & DRIESSENS (2004)      | RELATIONAL RL                  | 20	imes10      | $\approx 50$               |                          |
| Böhm et al. (2005)            | GENETIC ALGORITHM              | 20 	imes 10    | 480,000,000<br>(Two Piece) | Вöнм                     |
| FARIAS & VAN ROY (2006)       | LINEAR PROGRAMMING             | 20 	imes 10    | 4,274                      | Bertsekas                |
| SZITA & LÖRINCZ (2006)        | CROSS ENTROPY                  | 20 	imes 10    | 348,895                    | DELLACHERIE              |
| ROMDHANE & LAMONTAGNE (2008)  | CASE-BASED<br>REASONING AND RL | 20 	imes 10    | $\approx 50$               |                          |
| BOUMAZA (2009)                | CMA-ES                         | 20	imes10      | 35,000,000                 | BCTS                     |
| THIERY & SCHERRER (2009A;B)   | CROSS ENTROPY                  | $20 \times 10$ | 35,000,000                 | DT                       |
| GABILLON ET AL. (2013)        | CLASSIFICATION-BASED           | 20 	imes 10    | 51,000,000                 | DT FOR POLICY            |
|                               | POLICY ITERATION               |                |                            | DT + RBF FOR VALUE       |

#### Does it work?





## Practical Issues and Fixes







## Problem 1: What happens to the variance? $\Sigma^{t} = \frac{1}{e} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2}$

$$\Sigma^{t} = \frac{1}{e} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2} + \Sigma_{noise}$$

#### Collapses too quickly!

Simple fix: Add a bit of noise to the variance



#### Problem 2: What if we have a bad batch of samples?

 $\mu^{t} = \frac{1}{e} \sum_{i=1}^{e} \theta_{i}$ 

#### The elites can be bad, and the mean can slingshot into a bad value

#### Simple fix: Slowly update mean

 $\mu^{t} = \mu^{t-1} + \eta \frac{1}{e} \sum_{i=1}^{e} \theta_{i}$ 





## Problem 3: What if we never converge and do random walks?

### Single-steps cancel out Use small $\Sigma$



#### A very fancy version of Cross Entropy: CMA-ES

### Progress correlated Use large $\Sigma$



### Tetris is cute... But what about real robots?





### Cross Entropy for Snake Robot Gaits

#### Using Response Surfaces and Expected Improvement to Optimize Snake **Robot Gait Parameters**

Matthew Tesch, Jeff Schneider, and Howie Choset





Uses a Gaussian Process to fit a distribution

Prove it can find the optimal gait with *minimal samples* 





#### Cross Entropy Search for Motion Planning





Cross-Entropy Randomized Motion Planning

Marin Kobilarov

#### Distribution over control trajectories







### with cost-weighted average @ 60 Hz

#### Georgia Tech Auto Rally (Byron Boots lab)

#### 2560, 2.5 second trajectories sampled Cross Entropy for Control





## tl;dr





Learn a mapping from states to actions

#### The Goal of Policy Optimization $\pi_{\theta}(s) = \arg\min\theta^T f(s, a)$ а T-) T-2 T-1Lost = +1000 $\min_{\theta} J(\theta) = \sum_{t=0} \mathbb{E}_{\pi_{\theta}} c(s_t, a_t)$ " (art= 1.0 👝 (ar=+100 1 Cast= +1000





