1 A key fact "we" know beforehand

There is a simple count-based approximation of the variance of the log-odds ratio between two posterior multinomial distributions based on Dirichlet priors, and the log-odds ratio is also known to be distributed approximately normal.

2 Notation

The color-based notation below was picked because it was easier at the time to change colors in powerpoint than to add subscripts or superscripts.

Suppose we have two language samples, S and S, drawn from the same vocabulary $V=v_{1}, v_{2}, \ldots v_{|V|}$.
We use i to index into the vocabulary.
We write S_{\bullet} and S_{\bullet} for the number of tokens in each of the two samples. ${ }^{\text {I }}$
Example: if $S=$ "great great great", $S_{\bullet}=3$; there are three different tokens. ${ }^{\square}$
We define

$$
\begin{equation*}
p\left(v_{i}\right):=\frac{\operatorname{count}\left(v_{i}\right)}{S} \tag{1}
\end{equation*}
$$

and similarly for $p\left(v_{i}\right)$.

3 Log-odds

For a given i, the log-odds according to $p\left(v_{i}\right)$ is

$$
\begin{equation*}
\operatorname{odds}_{i}:=\frac{p\left(v_{i}\right)}{1-p\left(v_{i}\right)} \tag{2}
\end{equation*}
$$

and similarly for $p\left(v_{i}\right)$. And the \log-odds ratio for v_{i} is $\log \left(\right.$ odds $_{i} /$ odds $\left._{i}\right)$. What can this quantity range over?

4 Multinomial

A multinomial distribution for our choice of vocabulary has two (types of) parameters:

- $\vec{\phi} \in \Re^{|V|}$, where $\sum_{i} \phi_{i}=1$ and for all $i, \phi_{i} \geq 0$. These are the probabilities on the sides of the "die" whose sides are labeled with the vocabulary items v_{i}.
- n, the number of draws (the sample size)

We'd like to find v_{i} s where ϕ_{i} is really different from ϕ_{i}.

5 Re-estimated distribution

Suppose we have a Dirichlet prior on $\vec{\phi}$ parametrized by $\vec{\alpha} \in \Re^{|V|}$, where for all $i, \alpha_{i} \geq 0$; similarly for $\vec{\alpha}$. One can consider these vectors to represent pseudocounts.

Given a prior parametrized by $\vec{\alpha}$ and a sample S, we can have a re-estimated distribution over words, which we denote $\hat{p}\left(v_{i}\right)$, and similarly $\hat{p}\left(v_{i}\right)$. This gives us a new log-odds ratio, whose distribution under the hypothesis that $\phi_{i}=\phi_{i}$ is known according to \S 四. So we can test the corresponding z-score for significance.

[^0]
[^0]: ${ }^{1}$ The "dot" notation is borrowed from statistics, to make one think of summing over all the values of the index variable replaced with the "dot".
 ${ }^{2}$ The number of types in S, on the other hand, is 1 .

