Feature Selection in Text Categorization

[historical view]
Y. Yang & J. Pedersen
ICML, 1997

Research questions

- What are the strengths and weaknesses of existing feature selection methods?
- To what extent can feature selection improve the accuracy of a classifier? How much can we reduce the vocabulary without losing useful information for category prediction?

Motivation and Goals

- Text categorization problems typically have high dimensional feature spaces
 - Would be good to reduce the feature set size without sacrificing categorization accuracy
- Perform a comparative study of feature selection methods for text categorization
 - Focus on aggressive dimensionality reduction
 - Examine 5 methods

Feature selection methods

- Each uses a term-goodness criterion
- Thresholded to achieve the desired degree of term elimination

Feature selection methods

- Document frequency thresholding (DF)
 - DF is the # of documents in which a term occurs
 - Remove from the feature space those terms with DF < threshold (predetermined)
 - Simplest of the techniques explored
 - Issue: in ad-hoc retrieval tasks, low-DF terms are assumed to be *informative*!!

Feature selection methods

- Information gain (IG)
 - The best features are those that discriminate among the various classes
 - Binary case: CS major database example

Height	Eyes	Class	
short	brown	hacker	
tall	blue	theoretician	
tall	brown	hacker	
short	blue	theoretician	

Feature selection methods

- Mutual information (MI)
 - Used in NLP to model word associations.
 - Examines the # of times two words co-occur vs.
 the # of times they occur independently
 - One problem with MI: favors rare terms

Feature selection methods

- Chi-squared statistic (CHI)
 - Measures the lack of independence between a term and a category
 - Not reliable for low-frequency terms

Feature selection methods

- Term strength
 - Estimates term importance based on how commonly a term is likely to appear in "closelyrelated" documents
 - Quite different from the other methods
 - Based on document clustering: documents with many shared words are related; terms shared between related documents are relatively important

Classifiers

- kNN: k-nearest-neighbor
 - weighted
- LLSF: linear least squares fit regression
- Both were considered good methods at the time

Data

- Reuters-22173
 - 9610 training; 3662 testing
 - 92 categories
 - 1.24 categories per document
 - 16,039 terms

Data

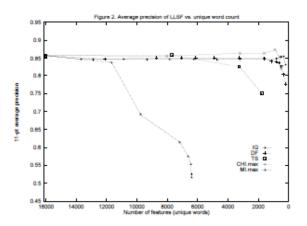
- OHSUMED
 - Subset of MEDLINE
 - 14,321 categories
 - 1990 abstracts: training
 - 72,076 terms
 - 1991 abstracts: testing
 - Average of 12 categories per document
- Evaluation
 - Recall
 - Precision
 - 11 point average precision

Term weighting

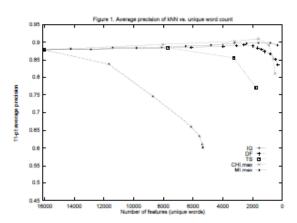
Term	Term Frequency		Inverse Document		Normalization		
		Freq	uency				
First	f(tf)	Second	$f(\frac{1}{df})$	Third	f(length)		
Letter		Letter	,	Letter			
n (natural)	tf	n (no)	1	n (no)	1		
1 (logarithmic)	$1 + \log(tf)$	t (full)	$log(\frac{N}{df})$	c (cosine)	$\sqrt{w_1^2 + w_2^2 + + w_n^2}$		
a (augmented)	$0.5 + 0.5 \times \frac{tf}{max\ tf}$						

Table 1: Term Weights in the Smart System

Performance curve: LLSF



Performance curve: k-NN



Qualitative comparison

Table 1. Criteria and performance of feature selection methods in kNN & LLSF

Method	DF	IG	CHI	MI	TS
favoring common terms	Y	Y	Y	N	Y/N
using categories	N	Y	Y	Y	Ň
using term absence	N	Y	Y	N	N
performance in kNN/LLSF	excellent	excellent	excellent	poor	ok