
1

CS674 Natural Language Processing

Last class
– Spelling correction
– Noisy channel model
– Bayesian approach to spelling correction

Today
– Likelihood computation for spelling correction
– Minimum edit distance
– Bayesian method for pronunciation

Noisy channel model

Channel introduces noise which makes it hard to
recognize the true word.

Goal: build a model of the channel so that we can figure
out how it modified the true word…so that we can recover
it.

Bayesian spelling correction

Let c range over the set C of candidate
corrections
Let t represent the typo
Select the most likely correction:

)()|(maxargˆ cPctPc
Cc∈

=

likelihood prior

Computing the prior

Problem: counts of 0
Solution: smoothing

N
cCcP)()(=

||5.0
5.0)()(
VN

cCcP
+

+
=

2

Computing the likelihood
Computing the likelihood term P(t|c) exactly is an
unsolved problem
Can estimate its value
– The most important factors predicting an insertion,

deletion, transposition are simple local factors
Simple method: estimate the number of times that
a single-letter error occurs in some large corpus
of errors
– E.g. estimate P(acress | across) using the number of

times that e was substituted for o

Confusion matrices
One for each type of single-error
– sub[x,y]

» # of times that x was typed as y
» sub[o,e] = # of times that e was substituted for o

– trans[x,y]
» # of times that xy was typed as yx

– del[x,y]
» # of times that the characters xy in the correct word were typed

as x
– ins[x,y]

» # of times that the character x in the correct word was typed as
xy

Estimating P(t|c)
If deletion, e.g.

P(acress|actress) =
times ct is mistyped as c

times ct appears
• More generally,

where cp is the pth character of the word c
tp is the pth character of the word t

)(
],[

)|(
1

1

pp

pp

cccount
ccdel

ctP
−

−=

Estimating P(t|c)
If substitution, e.g.

P(acress|across) =
times e is substituted for o

times o appears
• More generally,

where cp is the pth character of the word c
tp is the pth character of the word t

)(
],[

)|(
p

pp

ccount
ctsub

ctP =

3

Estimating P(t|c)
P(t|c) = if deletion

if insertion

if substitution

if transposition

where cp is the pth character of the word c
tp is the pth character of the word t

)(/],[11 pppp cccountccdel −−

)(/],[ppp ccountctsub

)(/],[11 −− ppp ccounttcins

)(/],[11 ++ pppp cccountcctrans

Final probabilities

Context: …was called a “stellar and versatile
acress whose combination of sass and glamour
has defined her”…

Spelling correction with multiple
errors

computing string distance
E.g. use the minimum edit distance algorithm
(Wagner and Fischer, 1974)
– Determines the minimum number of editing operations

(insertion, deletion, substitution) needed to transform
one string into another

Assigning costs
Levenshtein distance
– cost (del)= cost (ins) = cost (subst) = 1
– So the Levenshtein distance between intention and

execution is 5
Other common options
– cost (del)= cost (ins) = 1
– cost (subst) = 2

» Because it counts as a deletion and an insertion

Weight by more complex functions
– E.g. using the confusion matrices discussed earlier

4

Computing minimum edit distance
Use dynamic programming
Intuition of dynamic programming solution is that
a large problem can be solved by properly
combining the solutions to various subproblems
Operate by creating an edit-distance matrix
– edit-distance[i,j] contains the distance between the first

i characters of the target and the first j characters of the
source

min-edit-distance algorithm

