CS674 Natural Language Processing

= Last class
— Spelling correction
— Noisy channel model
— Bayesian approach to spelling correction
= Today
— Likelihood computation for spelling correction
— Minimum edit distance
— Bayesian method for pronunciation

Noisy channel model

Y guess at
sotcE > word== DECORER > original
word

= Channel introduces noise which makes it hard to
recognize the true word.

NOISY CHANNEL

= Goal: build a model of the channel so that we can figure
out how it modified the true word...so that we can recover
it.

Bayesian spelling correction

= Let c range over the set C of candidate
corrections

= Let t represent the typo
= Select the most likely correction:

likelihood prior

. —
c=argmax P(t|c) P(c)

ceC

Computing the prior

= Problem: counts of O
= Solution: smoothing

ple)= CO+05
N+0.5|V|

Computing the likelihood

= Computing the likelihood term P(t|c) exactly is an
unsolved problem

= Can estimate its value
— The most important factors predicting an insertion,

deletion, transposition are simple local factors

= Simple method: estimate the number of times that
a single-letter error occurs in some large corpus
of errors

— E.g. estimate P(acress | across) using the number of
times that e was substituted for o

Confusion matrices

= One for each type of single-error
— sublx,y]
» # of times that x was typed as y
» sublo,e] = # of times that e was substituted for o
— trans[x,y]
» # of times that xy was typed as yx
— del[x,y]
» # of times that the characters xy in the correct word were typed
as x
— ins[x,y]
» # of times that the character x in the correct word was typed as
Xy

Estimating P(t|c)

= |f deletion, e.g.
P(acress|actress) =
times ct is mistyped as ¢
times ct appears

* More generally,

(] 0) dellc, ,,c,]
c)=——+—+*+—
count(c, c,)

where ¢, is the pth character of the word ¢
t, is the pth character of the word ¢

Estimating P(t|c)

= If substitution, e.g.
P(acress|across) =
times e is substituted for o
times o appears

* More generally,

] 0) sublt,,c,]
c)=—7=5-+-
count(c,)

where ¢, is the pth character of the word ¢
t, is the pth character of the word ¢

Estimating P(t|c)

P(tlc) = |dellc, ,c,]/ count(c, df deletion

ins[c, ,t,]/ count(c,) if insertion

A

sublt,,c,]/ count(c,) if substitution

(rans[cp ,€,]/ count(c c,.,) if transposition

where c, is the pth character of the word ¢
t, is the pth character of the word ¢

Final probabilities

< Treqi©) [pie) P Pl] %
actress 1343 [IINEYE anory 3.69 % 10— 3704,
Cress 0 000000014 [00000144 | 2.02% 1074 0%
caress 4 0000001 000001 64 Ledx 103 09
ACCess 2280 0003E 000000206 1,21 = 11! 0%
across || 8436 00010 0000093 177 % 10— 18%
acres 2879 000063 0000321 2,00 % 10— 1%
acres 2879 000065 0000342 2.22% 107 23%

Context: ...was called a “stellar and versatile
acress whose combination of sass and glamour
has defined her”...

Spelling correction with multiple
errors

= computing string distance
= E.g. use the minimum edit distance algorithm
(Wagner and Fischer, 1974)

— Determines the minimum number of editing operations
(insertion, deletion, substitution) needed to transform
one string into another

delete i —-

i ntentioen
Operation substitute n by ¢ -
. etention
List substitute thy x —m
i exention
insert v e
tenution

substitute n by ¢ —-
execution

Assigning costs

= Levenshtein distance
— cost (del)= cost (ins) = cost (subst) = 1

— So the Levenshtein distance between intention and
execution is 5

= Other common options
— cost (del)= cost (ins) = 1
— cost (subst) = 2
» Because it counts as a deletion and an insertion
= Weight by more complex functions
— E.g. using the confusion matrices discussed earlier

Computing minimum edit distance

= Use dynamic programming

= Intuition of dynamic programming solution is that
a large problem can be solved by properly
combining the solutions to various subproblems

= Operate by creating an edit-distance matrix

— edit-distanceli,j] contains the distance between the first
i characters of the target and the first j characters of the
source

min-edit-distance algorithm

Tunction MIN-EDIT-DISTANCE({aivet, souice) returns min-distance

14— LENGTH(farzel)
M= LENGTH{source)
Creale a distance malrix distance fn+1,m+1]
distance 0,0} +0
for each column i from O to n do
for cach row 7 from 0 to m do
distance {i, j] +— WIN(distance|i=1_j| + ins-costifargel;).
distance|i=1,j=1]+ subsi-cost(so
distance|i,j—1] + del-cosi(source 1))

ey, larget),

