CS674 Natural Language Processing

- Last class
 - Introduction to generative models of language
 - » Statistics of natural language
 - » Unsmoothed N-grams
- Today
 - Smoothing
 - » Add-one
 - » Witten-Bell
 - » Good-Turing
 - Training issues

N-gram approximations

- Markov assumption: only the prior local context
 --- the last few words --- matters
- N-gram approximation

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-N+1}^{n-1})$$

Training N-gram models

- N-gram models can be trained by counting and normalizing
 - MLE estimates from relative frequencies
 - Bigram model

$$P(w_n \mid w_1^{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

- General form

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

Bigram probabilities

Problem with the maximum likelihood estimate: sparse data

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Smoothing

- Need better estimators for rare events
- Approach
 - Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events
 - » Smoothing
 - » Discounting methods

Add-one smoothing

- Add one to all of the counts before normalizing into probabilities
- Normal unigram probabilities

$$P(w_x) = \frac{C(w_x)}{N}$$

Smoothed unigram probabilities

$$P(w_x) = \frac{C(w_x) + 1}{N + V}$$

Adjusted counts
$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Adjusted bigram counts

Discount d_c

$$d_c = \frac{c^*}{c}$$

Ratio of the discounted counts to the original counts

	1	want	to	eat	Chinese	food	lunch
1 1	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

	I	want	to	eat	Chinese	food	lunch
I	6	740	.68	10	.68	.68	.68
want	2	.42	331	.42	3	4	3
to	3	.69	8	594	3	.69	9
eat	.37	.37	1	.37	7.4	1	20
Chinese	.36	.12	.12	.12	.12	15	.24
food	10	.48	9	.48	.48	.48	.48
lunch	1.1	.22	.22	.22	.22	.44	.22

Too much probability mass is moved

- Estimated bigram frequencies
- AP data, 44million words
- Church and Gale (1991)
- In general, add-one smoothing is a poor method of smoothing
- Much worse than other methods in predicting the actual probability for unseen bigrams
- Variances of the counts are worse than those from the unsmoothed MLE method

$r = f_{MLE}$	f _{emp}	f _{add-1}
0	0.000027	0.000137
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822
6	5.23	0.000959
7	6.21	0.00109
8	7.21	0.00123
9	8.26	0.00137

Methodology

- Cardinal sin: Testing on the training corpus
- Divide data into training set and test set
 - Train the statistical parameters on the training set; use them to compute probabilities on the test set
 - Test set: 5-10% of the total data, but large enough for reliable results
- Divide training into training and validation/held out set
 - » Obtain counts from training
 - » Tune smoothing parameters on the validation set
- Divide test set into development and final test set
 - Do all algorithm development by testing on the dev set, save the final test set for the very end...

Witten-Bell discounting

- Model the probability of seeing a zero-frequency N-gram by the probability of seeing an N-gram for the first time.
 - Use the count of things you've seen once to help estimate the count of things you've never seen.
- Need to compute the probability of seeing an N-gram for the first time
- Estimate the *total* probability mass of all the zero N-grams:

 $\frac{T}{N+T}$

Probability of each of Z unseen N-grams:

$$p_i = \frac{1}{Z(N+T)}$$

Witten-Bell discounting results

- Much better than add-one smoothing
- Used frequently for smoothing speech language models
- Seems to perform poorly when used on small training sets

		I	want	to	eat	Chinese	food	lunch
1	\neg	- 6	740	.68	10	.68	.68	.68
wan	ıt	2	.42	331	.42	3	4	3
to	_	3	.69	8	594	3	.69	9
eat	_	.37	.37	1	.37	7.4	1	20
Chi	nese	.36	.12	.12	.12	.12	15	.24
food	i	10	.48	9	.48	.48	.48	.48
lunc	h	1.1	.22	.22	.22	.22	.44	.22

	I	want	to	eat	Chinese	food	lunch
I	8	1060	.062	13	.062	.062	.062
want	3	.046	740	.046	6	8	6
to	3	.085	10	827	3	.085	12
eat	.075	.075	2	.075	17	2	46
Chinese	2	.012	.012	.012	.012	109	1
food	18	.059	16	.059	.059	.059	.059
lunch	4	.026	.026	.026	.026	1	.026

Good-Turing discounting

- Re-estimates the amount of probability mass to assign to N-grams with zero or low counts by looking at the number of N-grams with higher counts.
- Let N_c be the number of N-grams that occur c times.
- So, applying the idea to smoothing the joint probability of bigrams, N₀ is the number of bigrams b of count 0, N₁ is the number of bigrams b with count 1, etc.
- Revised counts:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

Good-Turing discounting results

- Works very well in practice
- practice

 Usually, the GT discounted estimate c* is used only for unreliable counts (e.g. < 5)

 As with other discounting methods, it is the norm to treat N-grams with low counts (e.g. counts of 1) as if the count was 0

$r = f_{MLE}$	f _{emp}	f _{add-1}	f _{GT}
0	0.000027	0.000137	0.000027
1	0.448	0.000274	0.446
2	1.25	0.000411	1.26
3	2.24	0.000548	2.24
4	3.23	0.000685	3.24
5	4.21	0.000822	4.22
6	5.23	0.000959	5.19
7	6.21	0.00109	6.21
8	7.21	0.00123	7.24
9	8.26	0.00137	8.25