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CS674 Natural Language Processing
Last class
– Introduction to generative models of language

» Statistics of natural language
» Unsmoothed N-grams

Today 
– Smoothing

» Add-one
» Witten-Bell
» Good-Turing

– Training issues

N-gram approximations

Markov assumption: only the prior local context 
--- the last few words --- matters
N-gram approximation
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Training N-gram models

N-gram models can be trained by counting 
and normalizing
– MLE estimates from relative frequencies
– Bigram model

– General form
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Bigram probabilities

Problem with the maximum likelihood 
estimate: sparse data
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Smoothing

Need better estimators for rare events
Approach
– Somewhat decrease the probability of 

previously seen events, so that there is a little 
bit of probability mass left over for previously 
unseen events

» Smoothing
» Discounting methods

Add-one smoothing
Add one to all of the counts before normalizing 
into probabilities
Normal unigram probabilities

Smoothed unigram probabilities

Adjusted counts
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Adjusted bigram counts

Discount dc

Ratio of the 
discounted 
counts to the 
original 
counts
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Too much probability mass is moved

Estimated bigram frequencies
AP data, 44million words
Church and Gale (1991)
In general, add-one smoothing 
is a poor method of smoothing
Much worse than other 
methods in predicting the 
actual probability for unseen
bigrams
Variances of the counts are 
worse than those from the
unsmoothed MLE method
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fadd-1fempr = fMLE
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Methodology
Cardinal sin: Testing on the training corpus
Divide data into training set and test set
– Train the statistical parameters on the training set; use them to 

compute probabilities on the test set
– Test set: 5-10% of the total data, but large enough for reliable 

results
Divide training into training and validation/held out set

» Obtain counts from training
» Tune smoothing parameters on the validation set

Divide test set into development and final test set
– Do all algorithm development by testing on the dev set, save the

final test set for the very end…

Witten-Bell discounting 
Model the probability of seeing a zero-frequency N-gram 
by the probability of seeing an N-gram for the first time.
– Use the count of things you’ve seen once to help estimate the 

count of things you’ve never seen.
Need to compute the probability of seeing an N-gram for 
the first time
Estimate the total probability mass of all the zero N-
grams:

Probability of each of Z unseen N-grams:
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Witten-Bell discounting results

Much better than 
add-one smoothing
Used frequently for 
smoothing speech 
language models
Seems to perform 
poorly when used 
on small training 
sets

Good-Turing discounting
Re-estimates the amount of probability mass to assign to 
N-grams with zero or low counts by looking at the number 
of N-grams with higher counts.
Let Nc be the number of N-grams that occur c times.
So, applying the idea to smoothing the joint probability of
bigrams, N0 is the number of bigrams b of count 0, N1 is 
the number of bigrams b with count 1, etc.
Revised counts:
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Good-Turing discounting results
Works very well in 
practice
Usually, the GT 
discounted estimate 
c* is used only for 
unreliable counts 
(e.g. < 5)
As with other 
discounting 
methods, it is the 
norm to treat N-
grams with low 
counts (e.g. counts 
of 1) as if the count 
was 0
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