Last Class:

1. EM

Today: Part-of-Speech Tagging

- 1. Background
- 2. HMM Tagger

Slide CS674-2

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	**	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

POS tags

"There are 10 parts of speech, and they are all troublesome."

-Mark Twain

• POS tags are also known as word classes, morphological classes, or lexical tags.

• Typically much larger than Twain's 10:

- Penn Treebank: 45

- Brown corpus: 87

- C7 tagset: 146

Slide CS674-3

Why do POS tagging?

- 1. Provides a lot of information about the word and its neighbors. Useful for speech recognition.
- 2. Can tell us something about how the word is pronounced. Useful for speech synthesis systems.
- 3. Can be used in IR systems...to aid stemming algorithms, to select nouns.
- 4. Can aid WSD algorithms.
- 5. Used in ASR language models, e.g. in class-based N-gram language models.
- 6. Critical for partial parsing algorithms.

Slide CS674-4

Part-of-Speech Tagging Baseline

How hard is p-o-s tagging?

Given word w, find the most likely tag t, i.e. find the tag that maximizes: P(t|w)

Maximum Likelihood Estimator: 90% accuracy rate.

To improve reliability: need to use some of the local context.

Slide CS674-6

HMM Tagger

Given $W = w_1, \ldots, w_n$, find $T = t_1, \ldots, t_n$ that maximizes

$$P(t_1,\ldots,t_n|w_1,\ldots,w_n)$$

Restate using Bayes' rule:

$$(P(t_1,\ldots,t_n)*P(w_1,\ldots,w_n|t_1,\ldots,t_n))/P(w_1,\ldots,w_n)$$

Ignore denominator...

 ${\bf Make\ independence\ assumptions...}$

Approaches

- 1. **rule-based**: involve a large database of hand-written disambiguation rules, e.g. that specify that an ambiguous word is a noun rather than a verb if it follows a determiner.
- 2. **stochastic**: resolve tagging ambiguities by using a training corpus to compute the probability of a given word having a given tag in a given context.

HMM tagger, Maximum Likelihood Tagger, Markov model tagger

- 3. hybrid: E.g. transformation-based tagger (Brill tagger); learns symbolic rules based on a corpus.
- 4. **ensemble methods**: combine the results of multiple taggers.

Slide CS674-7

Independence Assumptions (factor 1)

 $P(t_1,\ldots,t_n)$: approximate using **n-gram model**

bigram $\prod_{i=1,n} P(t_i \mid t_{i-1})$

trigram $\prod_{i=1,n} P(t_i \mid t_{i-2}t_{i-1})$

Independence Assumptions (factor 2)

 $P(w_1, \ldots, w_n | t_1, \ldots, t_n)$: approximate by assuming that a word appears in a category independent of its neighbors

$$\prod_{i=1,n} P(w_i \,|\, t_i)$$

Assuming bigram model:

$$P(t_1, \dots, t_n) * P(w_1, \dots, w_n | t_1, \dots, t_n) \approx$$

$$\prod_{i=1,n} P(t_i | t_{i-1}) * P(w_i | t_i)$$

Slide CS674-10

Viterbi Algorithm

c: number of lexical categories

 $P(w_t|t_i)$: lexical generation probabilities

 $P(t_i|t_i)$: bigram probabilities

Find most likely sequence of lexical categories T_1, \ldots, T_n for word sequence.

Initialization

For i = 1 to c do
SCORE(i,1) =
$$P(t_i|\phi) * P(w_1|t_i)$$

BPTR(i,1) = 0

Slide CS674-12

Hidden Markov Models

Equation can be modeled by an HMM.

- states: represent a possible lexical category
- transition probabilities: bigram probabilities
- observation probabilities, lexical generation probabilities: indicate, for each word, how likely that word is to be selected if we randomly select the category associated with the node.

Slide CS674-11

Iteration

```
For t = 2 to n

For i = 1 to c

SCORE(i,t) = MAX_{j=1,c}(SCORE(j,t-1) * P(t_i|t_j)) * P(w_t|t_i)

SCORE(i,t) = index of j that gave max
```

Identify Sequence

```
\begin{split} T(n) &= i \text{ that maximizes SCORE}(i,n) \\ \text{For } i &= n\text{-}1 \text{ to } 1 \text{ do} \\ T(i) &= BPTR(\ T(i+1),\ i+1\ ) \end{split}
```

Results

- \bullet Effective if probability est mates are computed from a large corpus
- Effective if corpus is of the same style as the input to be classified
- \bullet Consistently achieve accuracies of 96% or better using trigram model
- Cuts error rate in half vs. naive algorithm (90% accuracy rate)
- Can be smoothed using backoff or deleted interpolation...

Slide CS674-14

Extensions

- Can train HMM tagger on unlabeled data using the EM algorithm, starting with a dictionary that lists which tags can be assigned to which words.
- EM then learns the word likelihood function for each tag, and the tag transition probabilities.
- Merialdo (1994) showed, however, that a tagger trained on even a small amount hand-tagged data works better than one trained via EM.