CS674 Natural Language Processing

- Last two classes
 - Finite-state morphological parsing
 - » Lexicon and morpohotactics
 - » Morphological parsing with FST's
 - » Orthographic rules
- Today
 - Porter stemmer
 - Loebner Prize discussion
 - Spelling correction
 - Noisy channel model

Porter stemmer

- Simpler option for dealing with morphology
 - No on-line lexicon
 - Used in many IR systems to form equivalence classes
 - » Details of suffixes are irrelevant
 - » Only require stems

Lexicon-free FST for stemming

- Based on a series of simple cascaded rewrite rules
 - (condition) S1 \rightarrow S2
 - Seven sets of rules, applied in order
 - Within each set, if more than one of the rules can apply, only the one with the longest matching suffix (S1) is followed.

Lexicon-free FST for stemming

Plural nouns / thirs person singular verbs (4 rules)

sses \rightarrow ss possesses \rightarrow possess ies \rightarrow I ties \rightarrow ti

Verbal past tense and progressives (3 rules)
(*v*) ed → null walked → walk

+cleanup rules to remove double letters, add back e's at \Rightarrow ate conflat(ed) \Rightarrow conflate

3. $(*v*) Y \rightarrow I$ happy \rightarrow happi

Derivational morphology I: multiple suffixes ator → ate operator → operate fulness → ful gratefulness → grateful

Lexicon-free FST for stemming

- Derivational morphology II: more multiple suffixes
 - ful → null grateful → grate
- 6. Derivational morphology III: single suffixes ous → null analogous → analog
- 7. Cleanup (3 rules)

(m>1) e → null probate → probat; rate → rate dropping double letters controll → control

Sample output

- O'Neill Criticizes Europe on Grants
 - Treasury Secretary Paul O'Neill expressed irritation Wednesday that European countries have refused to go along with a U.S. proposal to boost the amount of direct grants rich nations offer poor countries.
 - The Bush administration is pushing a plan to increase the amount of direct grants the World Bank provides the poorest nations to 50 percent of assistance, reducing use of loans to these nations.
- o'neill <u>criticizes</u> europe <u>grants</u> <u>treasury secretary</u> paul o'neill <u>expressed</u> <u>irritation</u> <u>european countries</u> <u>refused</u> US <u>proposal</u> boost direct <u>grants</u> rich <u>nations</u> poor <u>countries</u> bush <u>administration</u> <u>pushing</u> plan <u>increase</u> amount direct <u>grants</u> world bank <u>poorest</u> <u>nations</u> <u>assistance loans</u> <u>nations</u>

Loebner Prize papers: critiques

- Comments on the Turing Test
- Comments on Loebner's response
 - Inadequate
 - Subsequent runnings of the event backed some of Shieber's complaints (Chavdar)
 - Tone of the response (Doug, Chester) vs. tone of the editorial (Oren, Claire)
- Restrictions
 - for the event
 - » Problematic (Doug, Chester)
 - vs. restrictions in evaluating NLP
 - » Not a problem (Ves, Oren)
 - Engineering vs. science

Rest of Today

- Porter stemmer
- Loebner Prize discussion
- Spelling correction
- Noisy channel model

Detection and correction of spelling errors

- Frequency of spelling errors in human typed text varies from
 - 0.05% of the words in carefully edited newswire, to
 - 38% in difficult applications like telephone directory lookup
- Optical character recognition
 - Higher error rates than human typists
 - Make different kinds of errors, "D"→ "O"; "ri"→"n"
- On-line handwriting recognition

Types of spelling correction

- Non-word error detection
 - Detecting spelling errors that result in nonwords
 - » graffe → giraffe
- Isolated-word error correction:
 - Correcting spelling errors that result in nonwords
 - » Correcting *graffe* to *giraffe*, but looking only at the word in isolation

Kukich, 1992

Types of spelling correction

- Context-dependent error detection and correction
 - Using the context to help detect and correct spelling errors
 - Some of these may accidentally result in an actual word (real-word errors)
 - » Typographical errors
 - ◆e.g. there for three
 - » Homonym or near-homonym
 - ◆e.g. dessert for desert, or piece for peace

Kukich, 1992

Detecting non-word errors

- Use a dictionary
- Usually include models of morphology
- For other types of spelling correction, we'll need a model of spelling variation.

Probabilistic transduction

- surface representation → lexical representation
- sequence of letters in a mis-spelled word → sequence of letters in correctly spelled words
 - acress → actress, cress, acres
- string of symbols representing the pronunciation of a word in context → string of symbols representing the dictionary pronunciation
 - [er] → her, were, are, their, your
 - exacerbated by pronunciation variation
 - » the pronounced as THEE or THUH
 - » some aspects of this variation are systematic, like spelling error patterns

Noisy channel model

- Channel introduces noise which makes it hard to recognize the true word.
- Goal: build a model of the channel so that we can figure out how it modified the true word...so that we can recover it

Decoding algorithm

- Special case of Bayesian inference
 - Bayesian classification
 - » Given observation, determine which of a set of classes it belongs to.
 - » Observation
 - ◆string of phones or string of letters
 - » Classify into
 - ◆words

Pronunciation example

 Given a string of phones, e.g. [ni], determine which word corresponds to this string of phones

Р

- Consider all words in the vocabulary, V
- Select the single word, w, such that (word|observation) is highest

Computing P(w|O)

 Use Bayes' rule to transform into a product of two probabilities, each of which is easier to compute than P(w|O)