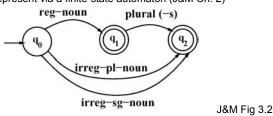
CS674 Natural Language Processing

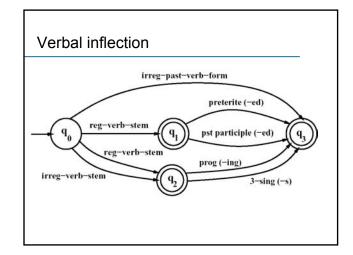
- Last class
 - Need for morphological analysis
 - Basics of English morphology
 - Finite-state morphological parsing
 - » Introduction

Goal

- Input: surface form
- Output: stem plus morphological features
- Focus: productive nominal plural (-s) verbal progressive (-ing)
 - foxes → fox +N +PL
 - geese → goose +N +PL
 - eating → eat +V +PRES-PART
 - goose \rightarrow (goose +N +SG) or (goose +V)

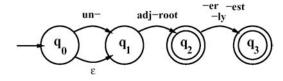
What knowledge sources will we need?

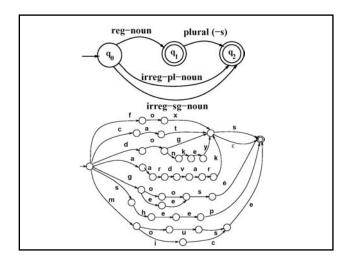

- Lexicon
 - List of stems and affixes with basic information about each
- Morphotactics
 - Model of morpheme ordering
 - Explains which classes of morphemes can follow others
- Spelling rules
 - Orthographic rules
 - Model the spelling changes that occur in a word when two morphemes combine


Topics for today

- Finite-state morphological parsing
 - Lexicon and morphotactics
 - Morphological parsing with FST's
 - Orthgraphic rules
 - Combining it all

The lexicon

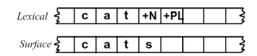

- Usually not represented as a list of words
- Structured as
 - List of stems and affixes
 - Representation of the morphotactics
- Represent via a finite-state automaton (J&M Ch. 2)


FSA's for derivational morphology

- Much more complex
- Often use CFG's instead
- Consider adjective morphology...what's the problem?

FSA's for morphological recognition

- Goal: Use the FSA's to determine whether an input string of letters makes up a legitimate English word
 - Combine the list of stems with the FSA
 - Expand each arc with all of the morphemes that comprise the class


Topics for today

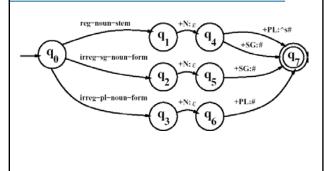
- Finite-state morphological parsing
 - Lexicon and morphotactics
 - Morphological parsing with FST's
 - Orthgraphic rules
 - Combining it all

Two-level morphology

- Represents a word as a correspondence between
 - Surface level
 - » Represents the spelling of the word, i.e. letter sequences
 - Lexical level
 - » Represents a concatenation of morphemes, i.e. morpheme and feature sequences

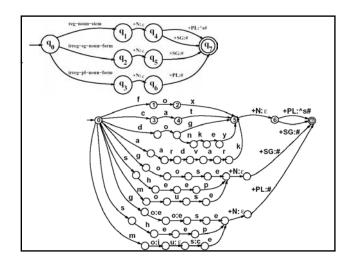
Two-level morphology example

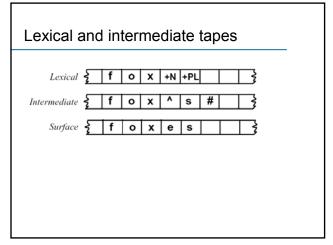
 Mapping between the two levels is accomplished via a finite-state transducer (FST)


Finite-state transducers

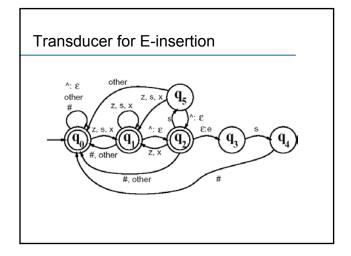
- A finite-state automaton that maps between one set of symbols and another
- An FSA defines a formal language by defining a set of strings
- Defines a relation between sets of strings
- Reads one string and generates another

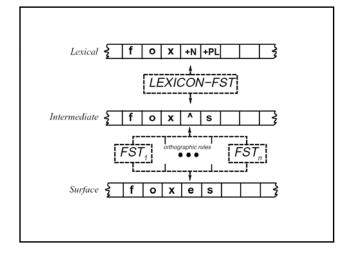
Formal definition


- Q: a finite set of N states q₀, q_{1,...}, q_N
- q₀: start state
- F: set of final states
- ∑: a finite alphabet of input-output pairs
 i:o
- $\delta(q,i:o)$: transition function between states. Given a state $q \in Q$ and complex symbol i:o, $\delta(q,i:o)$ returns a new state $q' \in Q$


FST morphological parser

Two-level lexicon


- reg-noun
 - tree
 - cloud
- irreg-pl-noun
 - g o:e o:e s e
 - sheep
 - m o:l u:ε s:c e
- irreg-sg-noun
 - goose
 - sheep
 - mouse


Orthographic Rules

- E insertion (for example)
 - e added after -s, -z, -x, -ch, -sh before -s
 - » watch/watches
 - » fox/foxes
- Implement these rules as a cascade of FST's
 - Output of one transducer is the input to the next transducer
 - One transducer per orthographic rule
 - Each transducer needs to express the constraints necessary for that rule; allow any other string of symbols to pass through unchanged.

Topics for today

- Finite-state morphological parsing
 - Lexicon and morphotactics
 - Morphological parsing with FST's
 - Orthgraphic rules
 - Combining it all

Ambiguity

- foxes can be a verb as well as a noun
- Local ambiguities occur
 - E.g. caress
- What shall we do?
 - Non-determinism requires the FST-parsing algorithm to include a search algorithm